/* * Copyright(c) 2019-2021 Intel Corporation * SPDX-License-Identifier: BSD-3-Clause-Clear */ #include #include #include #include #include #include "data.h" #include "ctx.h" /* * Cache private data. Used to share information between async contexts. */ struct cache_priv { ocf_queue_t mngt_queue; ocf_queue_t io_queue; }; /* * Helper function for error handling. */ void error(char *msg) { printf("ERROR: %s", msg); exit(1); } /* * Trigger queue asynchronously. Made synchronous for simplicity. * Notice that it makes all asynchronous calls synchronous, because * asynchronism in OCF is achieved mostly by using queues. */ static inline void queue_kick_async(ocf_queue_t q) { ocf_queue_run(q); } /* * Trigger queue synchronously. May be implemented as asynchronous as well, * but in some environments kicking queue synchronously may reduce latency, * so to take advantage of such situations OCF call synchronous variant of * queue kick callback where possible. */ static void queue_kick_sync(ocf_queue_t q) { ocf_queue_run(q); } /* * Stop queue thread. To keep this example simple we handle queues * synchronously, thus it's left non-implemented. */ static void queue_stop(ocf_queue_t q) { } /* * Queue ops providing interface for running queue thread in both synchronous * and asynchronous way. The stop() operation in called just before queue is * being destroyed. */ const struct ocf_queue_ops queue_ops = { .kick_sync = queue_kick_sync, .kick = queue_kick_async, .stop = queue_stop, }; /* * Simple completion context. As lots of OCF API functions work asynchronously * and call completion callback when job is done, we need some structure to * share program state with completion callback. In this case we have single * variable pointer to propagate error code. */ struct simple_context { int *error; }; /* * Basic asynchronous completion callback. Just propagate error code. */ static void simple_complete(ocf_cache_t cache, void *priv, int error) { struct simple_context *context= priv; *context->error = error; } /* * Function starting cache and attaching cache device. */ int initialize_cache(ocf_ctx_t ctx, ocf_cache_t *cache) { struct ocf_mngt_cache_config cache_cfg = { .name = "cache1" }; struct ocf_mngt_cache_attach_config attach_cfg = { }; struct cache_priv *cache_priv; struct simple_context context; int ret; /* * Asynchronous callbacks will assign error code to ret. That * way we have always the same variable holding last error code. */ context.error = &ret; /* Cache configuration */ ocf_mngt_cache_config_set_default(&cache_cfg); cache_cfg.metadata_volatile = true; /* Cache deivce (volume) configuration */ ocf_mngt_cache_attach_config_set_default(&attach_cfg); attach_cfg.device.volume_type = VOL_TYPE; ret = ocf_uuid_set_str(&attach_cfg.device.uuid, "cache"); if (ret) return ret; /* * Allocate cache private structure. We can not initialize it * on stack, as it may be used in various async contexts * throughout the entire live span of cache object. */ cache_priv = malloc(sizeof(*cache_priv)); if (!cache_priv) return -ENOMEM; /* Start cache */ ret = ocf_mngt_cache_start(ctx, cache, &cache_cfg, NULL); if (ret) goto err_priv; /* Assing cache priv structure to cache. */ ocf_cache_set_priv(*cache, cache_priv); /* * Create management queue. It will be used for performing various * asynchronous management operations, such as attaching cache volume * or adding core object. */ ret = ocf_queue_create(*cache, &cache_priv->mngt_queue, &queue_ops); if (ret) { ocf_mngt_cache_stop(*cache, simple_complete, &context); goto err_priv; } /* * Assign management queue to cache. This has to be done before any * other management operation. Management queue is treated specially, * and it may not be used for submitting IO requests. It also will not * be put on the cache stop - we have to put it manually at the end. */ ocf_mngt_cache_set_mngt_queue(*cache, cache_priv->mngt_queue); /* Create queue which will be used for IO submission. */ ret = ocf_queue_create(*cache, &cache_priv->io_queue, &queue_ops); if (ret) goto err_cache; /* Attach volume to cache */ ocf_mngt_cache_attach(*cache, &attach_cfg, simple_complete, &context); if (ret) goto err_cache; return 0; err_cache: ocf_mngt_cache_stop(*cache, simple_complete, &context); ocf_queue_put(cache_priv->mngt_queue); err_priv: free(cache_priv); return ret; } /* * Add core completion callback context. We need this to propagate error code * and handle to freshly initialized core object. */ struct add_core_context { ocf_core_t *core; int *error; }; /* Add core complete callback. Just rewrite args to context structure. */ static void add_core_complete(ocf_cache_t cache, ocf_core_t core, void *priv, int error) { struct add_core_context *context = priv; *context->core = core; *context->error = error; } /* * Function adding cache to core. */ int initialize_core(ocf_cache_t cache, ocf_core_t *core) { struct ocf_mngt_core_config core_cfg = { }; struct add_core_context context; int ret; /* * Asynchronous callback will assign core handle to core, * and to error code to ret. */ context.core = core; context.error = &ret; /* Core configuration */ ocf_mngt_core_config_set_default(&core_cfg); strcpy(core_cfg.name, "core1"); core_cfg.volume_type = VOL_TYPE; ret = ocf_uuid_set_str(&core_cfg.uuid, "core"); if (ret) return ret; /* Add core to cache */ ocf_mngt_cache_add_core(cache, &core_cfg, add_core_complete, &context); return ret; } /* * Callback function called when write completes. */ void complete_write(struct ocf_io *io, int error) { struct volume_data *data = ocf_io_get_data(io); printf("WRITE COMPLETE: (error: %d)\n", error); /* Free data buffer and io */ ctx_data_free(data); ocf_io_put(io); } /* * Callback function called when read completes. */ void complete_read(struct ocf_io *io, int error) { struct volume_data *data = ocf_io_get_data(io); printf("WRITE COMPLETE (error: %d)\n", error); printf("DATA: \"%s\"\n", (char *)data->ptr); /* Free data buffer and io */ ctx_data_free(data); ocf_io_put(io); } /* * Wrapper function for io submition. */ int submit_io(ocf_core_t core, struct volume_data *data, uint64_t addr, uint64_t len, int dir, ocf_end_io_t cmpl) { ocf_cache_t cache = ocf_core_get_cache(core); struct cache_priv *cache_priv = ocf_cache_get_priv(cache); struct ocf_io *io; /* Allocate new io */ io = ocf_core_new_io(core, cache_priv->io_queue, addr, len, dir, 0, 0); if (!io) return -ENOMEM; /* Assign data to io */ ocf_io_set_data(io, data, 0); /* Setup completion function */ ocf_io_set_cmpl(io, NULL, NULL, cmpl); /* Submit io */ ocf_core_submit_io(io); return 0; } /* * This function simulates actual business logic. * * It performs following steps: * 1. Allocate data buffer for write and write it with example data. * 2. Allocate new io, configure it for write, setup completion callback * and perform write to the core. * 3. Wait for write io completion (write is handled synchronosly, so no * actual wait is needed, but in real life we would need to use some * synchronization to be sure, that completion function has been already * called). Alternatively we could issue read io from write completion * callback. * 4. Allocate data buffer for read. * 5. Allocate new io, configure it for read, setup completion callback * and perform read from the core, from the same address where data * was previously written. * 6. Print example data in read completion callback. * * Data buffers and ios are freed in completion callbacks, so there is no * need to handle freeing in this function. */ void perform_workload(ocf_core_t core) { struct volume_data *data1, *data2; /* Allocate data buffer and fill it with example data */ data1 = ctx_data_alloc(1); if (!data1) error("Unable to allocate data1\n"); strcpy(data1->ptr, "This is some test data"); /* Prepare and submit write IO to the core */ submit_io(core, data1, 0, 512, OCF_WRITE, complete_write); /* After write completes, complete_write() callback will be called. */ /* * Here we would need to wait until write completes to be sure, that * performing read we retrive written data. */ /* Allocate data buffer for read */ data2 = ctx_data_alloc(1); if (!data2) error("Unable to allocate data2\n"); /* Prepare and submit read IO to the core */ submit_io(core, data2, 0, 512, OCF_READ, complete_read); /* After read completes, complete_read() callback will be called, * where we print our example data to stdout. */ } static void remove_core_complete(void *priv, int error) { struct simple_context *context = priv; *context->error = error; } int main(int argc, char *argv[]) { struct cache_priv *cache_priv; struct simple_context context; ocf_ctx_t ctx; ocf_cache_t cache1; ocf_core_t core1; int ret; context.error = &ret; /* Initialize OCF context */ if (ctx_init(&ctx)) error("Unable to initialize context\n"); /* Start cache */ if (initialize_cache(ctx, &cache1)) error("Unable to start cache\n"); /* Add core */ if (initialize_core(cache1, &core1)) error("Unable to add core\n"); /* Do some actual io operations */ perform_workload(core1); /* Remove core from cache */ ocf_mngt_cache_remove_core(core1, remove_core_complete, &context); if (ret) error("Unable to remove core\n"); /* Stop cache */ ocf_mngt_cache_stop(cache1, simple_complete, &context); if (ret) error("Unable to stop cache\n"); cache_priv = ocf_cache_get_priv(cache1); /* Put the management queue */ ocf_queue_put(cache_priv->mngt_queue); free(cache_priv); /* Deinitialize context */ ctx_cleanup(ctx); return 0; }