/* * Copyright(c) 2019 Intel Corporation * SPDX-License-Identifier: BSD-3-Clause-Clear */ #include #include "volume.h" #include "data.h" #include "ctx.h" #define VOL_SIZE 200*1024*1024 /* * In open() function we store uuid data as volume name (for debug messages) * and allocate 200 MiB of memory to simulate backend storage device. */ static int volume_open(ocf_volume_t volume, void *volume_params) { const struct ocf_volume_uuid *uuid = ocf_volume_get_uuid(volume); struct myvolume *myvolume = ocf_volume_get_priv(volume); myvolume->name = ocf_uuid_to_str(uuid); myvolume->mem = malloc(VOL_SIZE); printf("VOL OPEN: (name: %s)\n", myvolume->name); return 0; } /* * In close() function we just free memory allocated in open(). */ static void volume_close(ocf_volume_t volume) { struct myvolume *myvolume = ocf_volume_get_priv(volume); printf("VOL CLOSE: (name: %s)\n", myvolume->name); free(myvolume->mem); } /* * In submit_io() function we simulate read or write to backend storage device * by doing memcpy() to or from previously allocated memory buffer. */ static void volume_submit_io(struct ocf_io *io) { struct volume_data *data; struct myvolume *myvolume; data = ocf_io_get_data(io); myvolume = ocf_volume_get_priv(ocf_io_get_volume(io)); if (io->dir == OCF_WRITE) { memcpy(myvolume->mem + io->addr, data->ptr + data->offset, io->bytes); } else { memcpy(data->ptr + data->offset, myvolume->mem + io->addr, io->bytes); } printf("VOL: (name: %s), IO: (dir: %s, addr: %ld, bytes: %d)\n", myvolume->name, io->dir == OCF_READ ? "read" : "write", io->addr, io->bytes); io->end(io, 0); } /* * We don't need to implement submit_flush(). Just complete io with success. */ static void volume_submit_flush(struct ocf_io *io) { io->end(io, 0); } /* * We don't need to implement submit_discard(). Just complete io with success. */ static void volume_submit_discard(struct ocf_io *io) { io->end(io, 0); } /* * Let's set maximum io size to 128 KiB. */ static unsigned int volume_get_max_io_size(ocf_volume_t volume) { return 128 * 1024; } /* * Return volume size. */ static uint64_t volume_get_length(ocf_volume_t volume) { return VOL_SIZE; } /* * In set_data() we just assing data and offset to io. */ static int myvolume_io_set_data(struct ocf_io *io, ctx_data_t *data, uint32_t offset) { struct myvolume_io *myvolume_io = ocf_io_get_priv(io); myvolume_io->data = data; myvolume_io->offset = offset; return 0; } /* * In get_data() return data stored in io. */ static ctx_data_t *myvolume_io_get_data(struct ocf_io *io) { struct myvolume_io *myvolume_io = ocf_io_get_priv(io); return myvolume_io->data; } /* * This structure contains volume properties. It describes volume * type, which can be later instantiated as backend storage for cache * or core. */ const struct ocf_volume_properties volume_properties = { .name = "Example volume", .io_priv_size = sizeof(struct myvolume_io), .volume_priv_size = sizeof(struct myvolume), .caps = { .atomic_writes = 0, }, .ops = { .open = volume_open, .close = volume_close, .submit_io = volume_submit_io, .submit_flush = volume_submit_flush, .submit_discard = volume_submit_discard, .get_max_io_size = volume_get_max_io_size, .get_length = volume_get_length, }, .io_ops = { .set_data = myvolume_io_set_data, .get_data = myvolume_io_get_data, }, }; /* * This function registers volume type in OCF context. * It should be called just after context initialization. */ int volume_init(ocf_ctx_t ocf_ctx) { return ocf_ctx_register_volume_type(ocf_ctx, VOL_TYPE, &volume_properties); } /* * This function unregisters volume type in OCF context. * It should be called just before context cleanup. */ void volume_cleanup(ocf_ctx_t ocf_ctx) { ocf_ctx_unregister_volume_type(ocf_ctx, VOL_TYPE); }