ocf/src/mngt/ocf_mngt_flush.c
Robert Baldyga 4be6761a18 Core data object
Signed-off-by: Robert Baldyga <robert.baldyga@intel.com>
2019-01-04 08:33:34 +01:00

804 lines
18 KiB
C

/*
* Copyright(c) 2012-2018 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#include "ocf/ocf.h"
#include "ocf_mngt_common.h"
#include "../ocf_priv.h"
#include "../metadata/metadata.h"
#include "../cleaning/cleaning.h"
#include "../engine/cache_engine.h"
#include "../utils/utils_cleaner.h"
#include "../utils/utils_cache_line.h"
#include "../utils/utils_part.h"
#include "../ocf_def_priv.h"
static inline void _ocf_mngt_begin_flush(struct ocf_cache *cache)
{
env_mutex_lock(&cache->flush_mutex);
env_atomic_set(&cache->flush_started, 1);
env_waitqueue_wait(cache->pending_dirty_wq,
!env_atomic_read(&cache->pending_dirty_requests));
}
static inline void _ocf_mngt_end_flush(struct ocf_cache *cache)
{
env_atomic_set(&cache->flush_started, 0);
env_mutex_unlock(&cache->flush_mutex);
}
bool ocf_mngt_cache_is_dirty(ocf_cache_t cache)
{
uint32_t i;
for (i = 0; i < OCF_CORE_MAX; ++i) {
if (!cache->core_conf_meta[i].added)
continue;
if (env_atomic_read(&(cache->core_runtime_meta[i].
dirty_clines))) {
return true;
}
}
return false;
}
/************************FLUSH CORE CODE**************************************/
/* Returns:
* 0 if OK and tbl & num is filled:
* * tbl - table with sectors&cacheline
* * num - number of items in this table.
* other value means error.
* NOTE:
* Table is not sorted.
*/
static int _ocf_mngt_get_sectors(struct ocf_cache *cache, int core_id,
struct flush_data **tbl, uint32_t *num)
{
uint64_t core_line;
ocf_core_id_t i_core_id;
struct flush_data *p;
uint32_t i, j, dirty = 0;
dirty = env_atomic_read(&cache->core_runtime_meta[core_id].
dirty_clines);
if (!dirty) {
*num = 0;
*tbl = NULL;
return 0;
}
p = env_vmalloc(dirty * sizeof(**tbl));
if (!p)
return -OCF_ERR_NO_MEM;
for (i = 0, j = 0; i < cache->device->collision_table_entries; i++) {
ocf_metadata_get_core_info(cache, i, &i_core_id, &core_line);
if (i_core_id != core_id)
continue;
if (!metadata_test_valid_any(cache, i))
continue;
if (!metadata_test_dirty(cache, i))
continue;
if (ocf_cache_line_is_used(cache, i))
continue;
/* It's core_id cacheline and it's valid and it's dirty! */
p[j].cache_line = i;
p[j].core_line = core_line;
p[j].core_id = i_core_id;
j++;
/* stop if all cachelines were found */
if (j == dirty)
break;
}
ocf_core_log(&cache->core[core_id], log_debug,
"%u dirty cache lines to clean\n", j);
if (dirty != j) {
ocf_cache_log(cache, log_debug, "Wrong number of dirty "
"blocks for flushing core %s (%u!=%u)\n",
cache->core[core_id].name, j, dirty);
}
*tbl = p;
*num = j;
return 0;
}
static void _ocf_mngt_free_sectors(void *tbl)
{
env_vfree(tbl);
}
static int _ocf_mngt_get_flush_containers(ocf_cache_t cache,
struct flush_container **fctbl, uint32_t *fcnum)
{
struct flush_container *fc;
struct flush_container *curr;
uint32_t *core_revmap;
uint32_t num;
uint64_t core_line;
ocf_core_id_t core_id;
uint32_t i, j, dirty = 0;
int step = 0;
/*
* TODO: Create containers for each physical device, not for
* each core. Cores can be partitions of single device.
*/
num = cache->conf_meta->core_count;
if (num == 0) {
*fcnum = 0;
return 0;
}
core_revmap = env_vzalloc(sizeof(*core_revmap) * OCF_CORE_MAX);
if (!core_revmap)
return -OCF_ERR_NO_MEM;
/* TODO: Alloc flush_containers and data tables in single allocation */
fc = env_vzalloc(sizeof(**fctbl) * num);
if (!fc) {
env_vfree(core_revmap);
return -OCF_ERR_NO_MEM;
}
for (i = 0, j = 0; i < OCF_CORE_MAX; i++) {
if (!env_bit_test(i, cache->conf_meta->valid_object_bitmap))
continue;
fc[j].core_id = i;
core_revmap[i] = j;
/* Check for dirty blocks */
fc[j].count = env_atomic_read(&cache->
core_runtime_meta[i].dirty_clines);
dirty += fc[j].count;
if (fc[j].count) {
fc[j].flush_data = env_vmalloc(fc[j].count *
sizeof(*fc[j].flush_data));
}
if (++j == cache->conf_meta->core_count)
break;
}
if (!dirty) {
env_vfree(core_revmap);
env_vfree(fc);
*fcnum = 0;
return 0;
}
for (i = 0, j = 0; i < cache->device->collision_table_entries; i++) {
ocf_metadata_get_core_info(cache, i, &core_id, &core_line);
if (!metadata_test_valid_any(cache, i))
continue;
if (!metadata_test_dirty(cache, i))
continue;
if (ocf_cache_line_is_used(cache, i))
continue;
curr = &fc[core_revmap[core_id]];
ENV_BUG_ON(curr->iter >= curr->count);
/* It's core_id cacheline and it's valid and it's dirty! */
curr->flush_data[curr->iter].cache_line = i;
curr->flush_data[curr->iter].core_line = core_line;
curr->flush_data[curr->iter].core_id = core_id;
curr->iter++;
j++;
/* stop if all cachelines were found */
if (j == dirty)
break;
OCF_COND_RESCHED(step, 1000000)
}
if (dirty != j) {
ocf_cache_log(cache, log_debug, "Wrong number of dirty "
"blocks (%u!=%u)\n", j, dirty);
for (i = 0; i < num; i++)
fc[i].count = fc[i].iter;
}
for (i = 0; i < num; i++)
fc[i].iter = 0;
env_vfree(core_revmap);
*fctbl = fc;
*fcnum = num;
return 0;
}
static void _ocf_mngt_free_flush_containers(struct flush_container *fctbl,
uint32_t num)
{
int i;
for (i = 0; i < num; i++)
env_vfree(fctbl[i].flush_data);
env_vfree(fctbl);
}
/*
* OCF will try to guess disk speed etc. and adjust flushing block
* size accordingly, however these bounds shall be respected regardless
* of disk speed, cache line size configured etc.
*/
#define OCF_MNG_FLUSH_MIN (4*MiB / ocf_line_size(cache))
#define OCF_MNG_FLUSH_MAX (100*MiB / ocf_line_size(cache))
static void _ocf_mngt_flush_portion(struct flush_container *fc)
{
ocf_cache_t cache = fc->cache;
uint64_t flush_portion_div;
uint32_t curr_count;
flush_portion_div = env_ticks_to_msecs(fc->ticks2 - fc->ticks1);
if (unlikely(!flush_portion_div))
flush_portion_div = 1;
fc->flush_portion = fc->flush_portion * 1000 / flush_portion_div;
fc->flush_portion &= ~0x3ffULL;
/* regardless those calculations, limit flush portion to be
* between OCF_MNG_FLUSH_MIN and OCF_MNG_FLUSH_MAX
*/
fc->flush_portion = OCF_MIN(fc->flush_portion, OCF_MNG_FLUSH_MAX);
fc->flush_portion = OCF_MAX(fc->flush_portion, OCF_MNG_FLUSH_MIN);
curr_count = OCF_MIN(fc->count - fc->iter, fc->flush_portion);
ocf_cleaner_do_flush_data_async(fc->cache,
&fc->flush_data[fc->iter],
curr_count, &fc->attribs);
fc->iter += curr_count;
}
static void _ocf_mngt_flush_end(void *private_data, int error)
{
struct flush_container *fc = private_data;
fc->ticks2 = env_get_tick_count();
env_atomic_cmpxchg(fc->error, 0, error);
env_atomic_set(&fc->completed, 1);
env_atomic_inc(fc->progress);
env_waitqueue_wake_up(fc->wq);
}
static int _ocf_mngt_flush_containers(ocf_cache_t cache,
struct flush_container *fctbl, uint32_t fcnum,
bool allow_interruption)
{
uint32_t fc_to_flush;
env_waitqueue wq;
env_atomic progress; /* incremented each time flushing of a portion of a
container is completed */
env_atomic error;
ocf_core_t core;
bool interrupt = false;
int i;
if (fcnum == 0)
return 0;
env_waitqueue_init(&wq);
/* Sort data. Smallest sectors first (0...n). */
ocf_cleaner_sort_flush_containers(fctbl, fcnum);
env_atomic_set(&error, 0);
for (i = 0; i < fcnum; i++) {
fctbl[i].attribs.cache_line_lock = true;
fctbl[i].attribs.metadata_locked = true;
fctbl[i].attribs.cmpl_context = &fctbl[i];
fctbl[i].attribs.cmpl_fn = _ocf_mngt_flush_end;
fctbl[i].attribs.io_queue = 0;
fctbl[i].cache = cache;
fctbl[i].progress = &progress;
fctbl[i].error = &error;
fctbl[i].wq = &wq;
fctbl[i].flush_portion = OCF_MNG_FLUSH_MIN;
fctbl[i].ticks1 = 0;
fctbl[i].ticks2 = UINT_MAX;
env_atomic_set(&fctbl[i].completed, 1);
}
for (fc_to_flush = fcnum; fc_to_flush > 0;) {
env_atomic_set(&progress, 0);
for (i = 0; i < fcnum; i++) {
if (!env_atomic_read(&fctbl[i].completed))
continue;
core = &cache->core[fctbl[i].core_id];
env_atomic_set(&core->flushed, fctbl[i].iter);
env_atomic_set(&fctbl[i].completed, 0);
if (fctbl[i].iter == fctbl[i].count || interrupt ||
env_atomic_read(&error)) {
fc_to_flush--;
continue;
}
_ocf_mngt_flush_portion(&fctbl[i]);
}
if (fc_to_flush) {
ocf_metadata_unlock(cache, OCF_METADATA_WR);
env_cond_resched();
env_waitqueue_wait(wq, env_atomic_read(&progress));
ocf_metadata_lock(cache, OCF_METADATA_WR);
}
if (cache->flushing_interrupted && !interrupt) {
if (allow_interruption) {
interrupt = true;
ocf_cache_log(cache, log_info,
"Flushing interrupted by "
"user\n");
} else {
ocf_cache_log(cache, log_err,
"Cannot interrupt flushing\n");
}
}
}
return interrupt ? -OCF_ERR_FLUSHING_INTERRUPTED :
env_atomic_read(&error);
}
static int _ocf_mngt_flush_core(ocf_core_t core, bool allow_interruption)
{
ocf_core_id_t core_id = ocf_core_get_id(core);
ocf_cache_t cache = core->obj.cache;
struct flush_container fc;
int ret;
ocf_metadata_lock(cache, OCF_METADATA_WR);
ret = _ocf_mngt_get_sectors(cache, core_id,
&fc.flush_data, &fc.count);
if (ret) {
ocf_core_log(core, log_err, "Flushing operation aborted, "
"no memory\n");
goto out;
}
fc.core_id = core_id;
fc.iter = 0;
ret = _ocf_mngt_flush_containers(cache, &fc, 1, allow_interruption);
_ocf_mngt_free_sectors(fc.flush_data);
out:
ocf_metadata_unlock(cache, OCF_METADATA_WR);
return ret;
}
static int _ocf_mngt_flush_all_cores(ocf_cache_t cache, bool allow_interruption)
{
struct flush_container *fctbl = NULL;
uint32_t fcnum = 0;
int ret;
ocf_metadata_lock(cache, OCF_METADATA_WR);
/* Get all 'dirty' sectors for all cores */
ret = _ocf_mngt_get_flush_containers(cache, &fctbl, &fcnum);
if (ret) {
ocf_cache_log(cache, log_err, "Flushing operation aborted, "
"no memory\n");
goto out;
}
ret = _ocf_mngt_flush_containers(cache, fctbl, fcnum,
allow_interruption);
_ocf_mngt_free_flush_containers(fctbl, fcnum);
out:
ocf_metadata_unlock(cache, OCF_METADATA_WR);
return ret;
}
/**
* Flush all the dirty data stored on cache (all the cores attached to it)
* @param cache cache instance to which operation applies
* @param allow_interruption whenever to allow interruption of flushing process.
* if set to 0, all requests to interrupt flushing will be ignored
*/
static int _ocf_mng_cache_flush_nolock(ocf_cache_t cache, bool interruption)
{
int result = 0;
int i, j;
env_atomic_set(&cache->flush_in_progress, 1);
cache->flushing_interrupted = 0;
do {
env_cond_resched();
result = _ocf_mngt_flush_all_cores(cache, interruption);
if (result) {
/* Cleaning error */
break;
}
} while (ocf_mngt_cache_is_dirty(cache));
env_atomic_set(&cache->flush_in_progress, 0);
for (i = 0, j = 0; i < OCF_CORE_MAX; i++) {
if (!env_bit_test(i, cache->conf_meta->valid_object_bitmap))
continue;
env_atomic_set(&cache->core[i].flushed, 0);
if (++j == cache->conf_meta->core_count)
break;
}
return result;
}
int ocf_mngt_cache_flush_nolock(ocf_cache_t cache, bool interruption)
{
int result = 0;
OCF_CHECK_NULL(cache);
if (ocf_cache_is_incomplete(cache)) {
ocf_cache_log(cache, log_err, "Cannot flush cache - "
"cache is in incomplete state\n");
return -OCF_ERR_CACHE_IN_INCOMPLETE_STATE;
}
ocf_cache_log(cache, log_info, "Flushing cache\n");
_ocf_mngt_begin_flush(cache);
result = _ocf_mng_cache_flush_nolock(cache, interruption);
_ocf_mngt_end_flush(cache);
if (!result)
ocf_cache_log(cache, log_info, "Flushing cache completed\n");
return result;
}
static int _ocf_mng_core_flush_nolock(ocf_core_t core, bool interruption)
{
struct ocf_cache *cache = core->obj.cache;
ocf_core_id_t core_id = ocf_core_get_id(core);
int ret;
cache->flushing_interrupted = 0;
do {
env_cond_resched();
ret = _ocf_mngt_flush_core(core, interruption);
if (ret == -OCF_ERR_FLUSHING_INTERRUPTED ||
ret == -OCF_ERR_WRITE_CORE) {
break;
}
} while (env_atomic_read(&cache->core_runtime_meta[core_id].
dirty_clines));
env_atomic_set(&core->flushed, 0);
return ret;
}
int ocf_mngt_core_flush_nolock(ocf_cache_t cache, ocf_core_id_t id,
bool interruption)
{
ocf_core_t core;
int ret = 0;
OCF_CHECK_NULL(cache);
ret = ocf_core_get(cache, id, &core);
if (ret < 0)
return -OCF_ERR_CORE_NOT_AVAIL;
if (!core->opened) {
ocf_core_log(core, log_err, "Cannot flush - core is in "
"inactive state\n");
return -OCF_ERR_CORE_IN_INACTIVE_STATE;
}
ocf_core_log(core, log_info, "Flushing\n");
_ocf_mngt_begin_flush(cache);
ret = _ocf_mng_core_flush_nolock(core, interruption);
_ocf_mngt_end_flush(cache);
if (!ret)
ocf_cache_log(cache, log_info, "Flushing completed\n");
return ret;
}
int ocf_mngt_cache_flush(ocf_cache_t cache, bool interruption)
{
int result = ocf_mngt_cache_read_lock(cache);
if (result)
return result;
if (!ocf_cache_is_device_attached(cache)) {
result = -OCF_ERR_INVAL;
goto unlock;
}
result = ocf_mngt_cache_flush_nolock(cache, interruption);
unlock:
ocf_mngt_cache_read_unlock(cache);
return result;
}
int ocf_mngt_core_flush(ocf_cache_t cache, ocf_core_id_t id, bool interruption)
{
int result;
/* lock read only */
result = ocf_mngt_cache_read_lock(cache);
if (result)
return result;
if (!ocf_cache_is_device_attached(cache)) {
result = -OCF_ERR_INVAL;
goto unlock;
}
result = ocf_mngt_core_flush_nolock(cache, id, interruption);
unlock:
ocf_mngt_cache_read_unlock(cache);
return result;
}
int ocf_mngt_core_purge(ocf_cache_t cache, ocf_core_id_t core_id, bool interruption)
{
int result = 0;
uint64_t core_size = ~0ULL;
ocf_core_t core;
OCF_CHECK_NULL(cache);
result = ocf_mngt_cache_read_lock(cache);
if (result)
return result;
result = ocf_core_get(cache, core_id, &core);
if (result < 0) {
ocf_mngt_cache_unlock(cache);
return -OCF_ERR_CORE_NOT_AVAIL;
}
core_size = ocf_dobj_get_length(&cache->core[core_id].obj);
core_size = core_size ?: ~0ULL;
_ocf_mngt_begin_flush(cache);
ocf_core_log(core, log_info, "Purging\n");
result = _ocf_mng_core_flush_nolock(core, interruption);
if (result)
goto err;
OCF_METADATA_LOCK_WR();
result = ocf_metadata_sparse_range(cache, core_id, 0,
core_size);
OCF_METADATA_UNLOCK_WR();
err:
_ocf_mngt_end_flush(cache);
ocf_mngt_cache_read_unlock(cache);
return result;
}
int ocf_mngt_cache_purge(ocf_cache_t cache, bool interruption)
{
int result = 0;
result = ocf_mngt_cache_read_lock(cache);
if (result)
return result;
_ocf_mngt_begin_flush(cache);
ocf_cache_log(cache, log_info, "Purging\n");
result = _ocf_mng_cache_flush_nolock(cache, interruption);
if (result)
goto err;
OCF_METADATA_LOCK_WR();
result = ocf_metadata_sparse_range(cache, OCF_CORE_ID_INVALID, 0,
~0ULL);
OCF_METADATA_UNLOCK_WR();
err:
_ocf_mngt_end_flush(cache);
ocf_mngt_cache_read_unlock(cache);
return result;
}
int ocf_mngt_cache_flush_interrupt(ocf_cache_t cache)
{
OCF_CHECK_NULL(cache);
ocf_cache_log(cache, log_alert, "Flushing interrupt\n");
cache->flushing_interrupted = 1;
return 0;
}
int ocf_mngt_cache_cleaning_set_policy(ocf_cache_t cache, ocf_cleaning_t type)
{
ocf_cleaning_t old_type;
int ret;
if (type < 0 || type >= ocf_cleaning_max)
return -OCF_ERR_INVAL;
ret = ocf_mngt_cache_lock(cache);
if (ret)
return ret;
old_type = cache->conf_meta->cleaning_policy_type;
if (type == old_type) {
ocf_cache_log(cache, log_info, "Cleaning policy %s is already "
"set\n", cleaning_policy_ops[old_type].name);
goto out;
}
ocf_metadata_lock(cache, OCF_METADATA_WR);
if (cleaning_policy_ops[old_type].deinitialize)
cleaning_policy_ops[old_type].deinitialize(cache);
if (cleaning_policy_ops[type].initialize) {
if (cleaning_policy_ops[type].initialize(cache, 1)) {
/*
* If initialization of new cleaning policy failed,
* we set cleaning policy to nop.
*/
type = ocf_cleaning_nop;
ret = -OCF_ERR_INVAL;
}
}
cache->conf_meta->cleaning_policy_type = type;
if (type != old_type) {
/*
* If operation was successfull or cleaning policy changed,
* we need to flush superblock.
*/
if (ocf_metadata_flush_superblock(cache)) {
ocf_cache_log(cache, log_err,
"Failed to flush superblock! Changes "
"in cache config are not persistent!\n");
}
}
ocf_cache_log(cache, log_info, "Changing cleaning policy from "
"%s to %s\n", cleaning_policy_ops[old_type].name,
cleaning_policy_ops[type].name);
ocf_metadata_unlock(cache, OCF_METADATA_WR);
out:
ocf_mngt_cache_unlock(cache);
return ret;
}
int ocf_mngt_cache_cleaning_get_policy(ocf_cache_t cache, ocf_cleaning_t *type)
{
int ret;
ret = ocf_mngt_cache_read_lock(cache);
if (ret)
return ret;
*type = cache->conf_meta->cleaning_policy_type;
ocf_mngt_cache_read_unlock(cache);
return 0;
}
int ocf_mngt_cache_cleaning_set_param(ocf_cache_t cache, ocf_cleaning_t type,
uint32_t param_id, uint32_t param_value)
{
int ret;
if (type < 0 || type >= ocf_cleaning_max)
return -OCF_ERR_INVAL;
if (!cleaning_policy_ops[type].set_cleaning_param)
return -OCF_ERR_INVAL;
ret = ocf_mngt_cache_lock(cache);
if (ret)
return ret;
ocf_metadata_lock(cache, OCF_METADATA_WR);
ret = cleaning_policy_ops[type].set_cleaning_param(cache,
param_id, param_value);
if (ret == 0) {
/*
* If operation was successfull or cleaning policy changed,
* we need to flush superblock.
*/
if (ocf_metadata_flush_superblock(cache)) {
ocf_cache_log(cache, log_err,
"Failed to flush superblock! Changes "
"in cache config are not persistent!\n");
}
}
ocf_metadata_unlock(cache, OCF_METADATA_WR);
ocf_mngt_cache_unlock(cache);
return ret;
}
int ocf_mngt_cache_cleaning_get_param(ocf_cache_t cache, ocf_cleaning_t type,
uint32_t param_id, uint32_t *param_value)
{
int ret;
if (type < 0 || type >= ocf_cleaning_max)
return -OCF_ERR_INVAL;
if (!cleaning_policy_ops[type].get_cleaning_param)
return -OCF_ERR_INVAL;
ret = ocf_mngt_cache_read_lock(cache);
if (ret)
return ret;
ret = cleaning_policy_ops[type].get_cleaning_param(cache,
param_id, param_value);
ocf_mngt_cache_read_unlock(cache);
return ret;
}