Merge pull request #444 from imjfckm/100p-hit-perf

Performance test for 100% hit ratio
This commit is contained in:
Robert Baldyga 2020-08-11 11:20:35 +02:00 committed by GitHub
commit 9863cf682a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 421 additions and 0 deletions

View File

@ -1 +1,2 @@
attotime>=0.2.0
schema==0.7.2

View File

@ -0,0 +1,48 @@
#
# Copyright(c) 2020 Intel Corporation
# SPDX-License-Identifier: BSD-3-Clause-Clear
#
from datetime import datetime as dt
import os
import json
import pytest
from utils.performance import PerfContainer, ConfigParameter, BuildTypes
from core.test_run import TestRun
from api.cas.casadm_parser import get_casadm_version
@pytest.fixture()
def perf_collector(request):
container = PerfContainer()
yield container
if container.is_empty:
# No performance metrics submitted by test, no sense in writing any log
TestRun.LOGGER.warning("No performance metrics collected by test using perf_collector")
return
container.insert_config_param(request.node.name.split("[")[0], ConfigParameter.TEST_NAME)
container.insert_config_param(get_casadm_version(), ConfigParameter.CAS_VERSION)
container.insert_config_param(TestRun.disks["cache"].disk_type, ConfigParameter.CACHE_TYPE)
container.insert_config_param(TestRun.disks["core"].disk_type, ConfigParameter.CORE_TYPE)
container.insert_config_param(dt.now(), ConfigParameter.TIMESTAMP)
container.insert_config_param(
request.config.getoption("--build-type"), ConfigParameter.BUILD_TYPE
)
if TestRun.dut.ip:
container.insert_config_param(TestRun.dut.ip, ConfigParameter.DUT)
perf_log_path = os.path.join(TestRun.LOGGER.base_dir, "perf.json")
with open(perf_log_path, "w") as dump_file:
json.dump(container.to_serializable_dict(), dump_file, indent=4)
def pytest_addoption(parser):
parser.addoption("--build-type", choices=BuildTypes, default="other")
def pytest_configure(config):
config.addinivalue_line("markers", "performance: performance test")

View File

@ -0,0 +1,156 @@
#
# Copyright(c) 2020 Intel Corporation
# SPDX-License-Identifier: BSD-3-Clause-Clear
#
import pytest
from api.cas import casadm
from api.cas.cache_config import (
CacheMode,
CacheLineSize,
SeqCutOffPolicy,
CleaningPolicy,
)
from utils.performance import WorkloadParameter
from core.test_run import TestRun
from test_tools.fio.fio import Fio
from test_tools.fio.fio_param import IoEngine, ReadWrite
from test_utils.os_utils import Udev, set_wbt_lat, get_dut_cpu_physical_cores
from test_utils.size import Size, Unit
from test_utils.output import CmdException
from storage_devices.disk import DiskTypeSet, DiskTypeLowerThan, DiskType
@pytest.mark.performance()
@pytest.mark.require_disk("cache", DiskTypeSet([DiskType.optane, DiskType.nand]))
@pytest.mark.require_disk("core", DiskTypeLowerThan("cache"))
@pytest.mark.parametrize("queue_depth", [1, 4, 16, 64, 256])
@pytest.mark.parametrize("numjobs", [1, 4, 16, 64, 256])
@pytest.mark.parametrize("cache_line_size", CacheLineSize)
def test_4k_100p_hit_reads_wt(queue_depth, numjobs, cache_line_size, perf_collector, request):
"""
title: Test CAS performance in 100% Cache Hit scenario
description: |
Characterize cache device with workload (parametrized by qd and job number), and then run
the same workload on cached volume.
pass_criteria:
- always passes
"""
TESTING_WORKSET = Size(20, Unit.GiB)
fio_cfg = (
Fio()
.create_command()
.io_engine(IoEngine.libaio)
.block_size(Size(4, Unit.KiB))
.read_write(ReadWrite.randread)
.io_depth(queue_depth)
.cpus_allowed(get_dut_cpu_physical_cores())
.direct()
)
with TestRun.step("Characterize cache device"):
cache_dev_characteristics = characterize_cache_device(
request.node.name, fio_cfg, queue_depth, numjobs, TESTING_WORKSET
)
fio_cfg.clear_jobs()
with TestRun.step("Prepare cache and core"):
cache, core = prepare_config(cache_line_size, CacheMode.WT)
fio_cfg = fio_cfg.target(core)
spread_jobs(fio_cfg, numjobs, TESTING_WORKSET)
with TestRun.step("Fill the cache"):
prefill_cache(core, TESTING_WORKSET)
with TestRun.step("Run fio"):
cache_results = fio_cfg.run()[0]
perf_collector.insert_workload_param(numjobs, WorkloadParameter.NUM_JOBS)
perf_collector.insert_workload_param(queue_depth, WorkloadParameter.QUEUE_DEPTH)
perf_collector.insert_cache_metrics_from_fio_job(cache_dev_characteristics)
perf_collector.insert_exp_obj_metrics_from_fio_job(cache_results)
perf_collector.insert_config_from_cache(cache)
def prefill_cache(core, size):
(
Fio()
.create_command()
.io_engine(IoEngine.libaio)
.block_size(Size(4, Unit.KiB))
.read_write(ReadWrite.write)
.target(core)
.size(size)
.direct()
.run()
)
@pytest.fixture(scope="session", autouse=True)
def disable_wbt_throttling():
cache_device = TestRun.disks["cache"]
core_device = TestRun.disks["core"]
try:
set_wbt_lat(cache_device, 0)
except CmdException:
TestRun.LOGGER.warning("Couldn't disable write-back throttling for cache device")
try:
set_wbt_lat(core_device, 0)
except CmdException:
TestRun.LOGGER.warning("Couldn't disable write-back throttling for core device")
def prepare_config(cache_line_size, cache_mode):
cache_device = TestRun.disks["cache"]
core_device = TestRun.disks["core"]
core_device.create_partitions([Size(3, Unit.GiB)])
cache = casadm.start_cache(
cache_device, cache_mode=cache_mode, cache_line_size=cache_line_size, force=True,
)
cache.set_seq_cutoff_policy(SeqCutOffPolicy.never)
cache.set_cleaning_policy(CleaningPolicy.nop)
Udev.disable()
core = cache.add_core(core_device.partitions[0])
return cache, core
def spread_jobs(fio_cfg, numjobs, size):
offset = (size / numjobs).align_down(Unit.Blocks512.value)
for i in range(numjobs):
fio_cfg.add_job(f"job_{i+1}").offset(offset * i).size(offset * (i + 1))
def characterize_cache_device(test_name, fio_cfg, queue_depth, numjobs, size):
cache_device = TestRun.disks["cache"]
try:
return TestRun.dev_characteristics[test_name][queue_depth][numjobs]
except AttributeError:
pass
except KeyError:
pass
spread_jobs(fio_cfg, numjobs, size)
result = fio_cfg.target(cache_device).run()[0]
if not hasattr(TestRun, "dev_characteristics"):
TestRun.dev_characteristics = {}
if test_name not in TestRun.dev_characteristics:
TestRun.dev_characteristics[test_name] = {}
if queue_depth not in TestRun.dev_characteristics[test_name]:
TestRun.dev_characteristics[test_name][queue_depth] = {}
TestRun.dev_characteristics[test_name][queue_depth][numjobs] = result
return result

View File

View File

@ -0,0 +1,216 @@
#
# Copyright(c) 2020 Intel Corporation
# SPDX-License-Identifier: BSD-3-Clause-Clear
#
from enum import Enum
from types import MethodType
from datetime import datetime
from schema import Schema, Use, And, SchemaError, Or
class ValidatableParameter(Enum):
"""
Parameter enumeration together with schema for validating this parameter
If given parameter is always valid put False as its value, otherwise use proper Schema object
"""
def __new__(cls, schema: Schema):
if not (isinstance(schema, Schema) or not schema):
raise Exception(
f"Invalid {cls.__name__} value. Expected: Schema instance or False, got: {schema}"
)
# Trick for changing value which is supplied by enum
# This way we can access Schema from enumeration member instance and still have Enum
# properties maintained
obj = object.__new__(cls)
obj._value_ = obj
obj.schema = schema
obj.validate = MethodType(cls.validate, obj)
return obj
def validate(self, param):
if self.schema:
param = self.schema.validate(param)
return param
def __repr__(self):
return f"<{type(self).__name__}.{self.name}>"
def __str__(self):
return str(self.name)
class PercentileMetric:
def __init__(self, value):
value = float(value)
if not 0 < value < 100:
raise SchemaError("Invalid percentile value")
self.value = value
def __str__(self):
return f"p{self.value:g}".replace(".", "_")
class IOMetric(ValidatableParameter):
read_IOPS = Schema(Use(int))
write_IOPS = Schema(Use(int))
read_BW = Schema(Use(int))
write_BW = Schema(Use(int))
read_CLAT_AVG = Schema(Use(int))
write_CLAT_AVG = Schema(Use(int))
read_CLAT_PERCENTILES = Schema({Use(PercentileMetric): Use(int)})
write_CLAT_PERCENTILES = Schema({Use(PercentileMetric): Use(int)})
BuildTypes = ["master", "pr", "other"]
class ConfigParameter(ValidatableParameter):
CAS_VERSION = Schema(Use(str))
DUT = Schema(Use(str))
TEST_NAME = Schema(str)
BUILD_TYPE = Schema(Or(*BuildTypes))
CACHE_CONFIG = Schema(
{"cache_mode": Use(str), "cache_line_size": Use(str), "cleaning_policy": Use(str)}
)
CACHE_TYPE = Schema(Use(str))
CORE_TYPE = Schema(Use(str))
TIMESTAMP = Schema(And(datetime, Use(str)))
class WorkloadParameter(ValidatableParameter):
NUM_JOBS = Schema(Use(int))
QUEUE_DEPTH = Schema(Use(int))
class MetricContainer:
def __init__(self, metric_type):
self.metrics = {}
self.metric_type = metric_type
def insert_metric(self, metric, kind):
if not isinstance(kind, self.metric_type):
raise Exception(f"Invalid metric type. Expected: {self.metric_type}, got: {type(kind)}")
if kind.value:
metric = kind.value.validate(metric)
self.metrics[kind] = metric
@property
def is_empty(self):
return len(self.metrics) == 0
def to_serializable_dict(self):
# No easy way for json.dump to deal with custom classes (especially custom Enums)
def stringify_dict(d):
new_dict = {}
for k, v in d.items():
k = str(k)
if isinstance(v, dict):
v = stringify_dict(v)
elif isinstance(v, int):
pass
elif isinstance(v, float):
pass
else:
v = str(v)
new_dict[k] = v
return new_dict
return stringify_dict(self.metrics)
class PerfContainer:
def __init__(self):
self.conf_params = MetricContainer(ConfigParameter)
self.workload_params = MetricContainer(WorkloadParameter)
self.cache_metrics = MetricContainer(IOMetric)
self.core_metrics = MetricContainer(IOMetric)
self.exp_obj_metrics = MetricContainer(IOMetric)
def insert_config_param(self, param, kind: ConfigParameter):
self.conf_params.insert_metric(param, kind)
def insert_config_from_cache(self, cache):
cache_config = {
"cache_mode": cache.get_cache_mode(),
"cache_line_size": cache.get_cache_line_size(),
"cleaning_policy": cache.get_cleaning_policy(),
}
self.conf_params.insert_metric(cache_config, ConfigParameter.CACHE_CONFIG)
def insert_workload_param(self, param, kind: WorkloadParameter):
self.workload_params.insert_metric(param, kind)
@staticmethod
def _insert_metrics_from_fio(container, result):
result = result.job
container.insert_metric(result.read.iops, IOMetric.read_IOPS)
container.insert_metric(result.write.iops, IOMetric.write_IOPS)
container.insert_metric(result.read.bw, IOMetric.read_BW)
container.insert_metric(result.write.bw, IOMetric.write_BW)
container.insert_metric(result.read.clat_ns.mean, IOMetric.read_CLAT_AVG)
container.insert_metric(result.write.clat_ns.mean, IOMetric.write_CLAT_AVG)
if hasattr(result.read.clat_ns, "percentile"):
container.insert_metric(
vars(result.read.clat_ns.percentile), IOMetric.read_CLAT_PERCENTILES
)
if hasattr(result.write.clat_ns, "percentile"):
container.insert_metric(
vars(result.write.clat_ns.percentile), IOMetric.write_CLAT_PERCENTILES
)
def insert_cache_metric(self, metric, kind: IOMetric):
self.cache_metrics.insert_metric(metric, kind)
def insert_cache_metrics_from_fio_job(self, fio_results):
self._insert_metrics_from_fio(self.cache_metrics, fio_results)
def insert_core_metric(self, metric, kind: IOMetric):
self.core_metrics.insert_metric(metric, kind)
def insert_core_metrics_from_fio_job(self, fio_results):
self._insert_metrics_from_fio(self.core_metrics, fio_results)
def insert_exp_obj_metric(self, metric, kind: IOMetric):
self.exp_obj_metrics.insert_metric(metric, kind)
def insert_exp_obj_metrics_from_fio_job(self, fio_results):
self._insert_metrics_from_fio(self.exp_obj_metrics, fio_results)
@property
def is_empty(self):
return (
self.conf_params.is_empty
and self.workload_params.is_empty
and self.cache_metrics.is_empty
and self.core_metrics.is_empty
and self.exp_obj_metrics.is_empty
)
def to_serializable_dict(self):
ret = {**self.conf_params.to_serializable_dict()}
if not self.workload_params.is_empty:
ret["workload_params"] = self.workload_params.to_serializable_dict()
if not self.cache_metrics.is_empty:
ret["cache_io"] = self.cache_metrics.to_serializable_dict()
if not self.core_metrics.is_empty:
ret["core_io"] = self.core_metrics.to_serializable_dict()
if not self.exp_obj_metrics.is_empty:
ret["exp_obj_io"] = self.exp_obj_metrics.to_serializable_dict()
return ret