open-cas-linux/modules/cas_cache/ocf_env.h
Adam Rutkowski 9b8fdde201 Relax allocations requirements
CAS does not need atomic alocations virtually anywhere. GFP_NOIO
should be sufficient in IO path. When allocation buffers during
module initialization use GFP_KERNEL.

Signed-off-by: Adam Rutkowski <adam.j.rutkowski@intel.com>
2019-10-23 16:04:27 -04:00

643 lines
12 KiB
C

/*
* Copyright(c) 2012-2019 Intel Corporation
* SPDX-License-Identifier: BSD-3-Clause-Clear
*/
#ifndef __OCF_ENV_H__
#define __OCF_ENV_H__
#include "linux_kernel_version.h"
#include "utils/utils_gc.h"
#include "ocf/ocf_err.h"
/* linux sector 512-bytes */
#define ENV_SECTOR_SHIFT 9
/* *** MEMORY MANAGEMENT *** */
#define ENV_MEM_NORMAL GFP_KERNEL
#define ENV_MEM_NOIO GFP_NOIO
static inline uint64_t env_get_free_memory(void)
{
return cas_global_zone_page_state(NR_FREE_PAGES) << PAGE_SHIFT;
}
static inline void *env_malloc(size_t size, int flags)
{
return kmalloc(size, flags);
}
static inline void *env_zalloc(size_t size, int flags)
{
return kzalloc(size, flags);
}
static inline void env_free(const void *ptr)
{
kfree(ptr);
}
static inline void *env_vmalloc(size_t size)
{
return vmalloc(size);
}
static inline void *env_vzalloc(size_t size)
{
return vzalloc(size);
}
static inline void env_vfree(const void *ptr)
{
cas_vfree(ptr);
}
static inline void *env_secure_alloc(size_t size)
{
return env_vmalloc(size);
}
static inline void env_secure_free(const void *ptr, size_t size)
{
env_vfree(ptr);
}
/* *** ALLOCATOR *** */
typedef struct _env_allocator env_allocator;
env_allocator *env_allocator_create(uint32_t size, const char *name);
void env_allocator_destroy(env_allocator *allocator);
void *env_allocator_new(env_allocator *allocator);
void env_allocator_del(env_allocator *allocator, void *item);
uint32_t env_allocator_item_count(env_allocator *allocator);
/* *** MUTEX *** */
typedef struct mutex env_mutex;
static inline int env_mutex_init(env_mutex *mutex)
{
mutex_init(mutex);
return 0;
}
static inline void env_mutex_lock(env_mutex *mutex)
{
mutex_lock(mutex);
}
static inline int env_mutex_lock_interruptible(env_mutex *mutex)
{
return mutex_lock_interruptible(mutex) ? -OCF_ERR_INTR : 0;
}
static inline int env_mutex_trylock(env_mutex *mutex)
{
return mutex_trylock(mutex) ? 0 : -OCF_ERR_NO_LOCK;
}
static inline void env_mutex_unlock(env_mutex *mutex)
{
mutex_unlock(mutex);
}
static inline int env_mutex_is_locked(env_mutex *mutex)
{
return mutex_is_locked(mutex);
}
static inline void env_mutex_destroy(env_mutex *mutex)
{
}
/* *** RECURSIVE MUTEX *** */
typedef struct {
struct mutex mutex;
atomic_t count;
struct task_struct *holder;
} env_rmutex;
static inline int env_rmutex_init(env_rmutex *rmutex)
{
mutex_init(&rmutex->mutex);
atomic_set(&rmutex->count, 0);
rmutex->holder = NULL;
return 0;
}
static inline void env_rmutex_lock(env_rmutex *rmutex)
{
if (current == rmutex->holder) {
atomic_inc(&rmutex->count);
return;
}
mutex_lock(&rmutex->mutex);
rmutex->holder = current;
atomic_inc(&rmutex->count);
}
static inline int env_rmutex_lock_interruptible(env_rmutex *rmutex)
{
int result = 0;
if (current == rmutex->holder) {
atomic_inc(&rmutex->count);
return 0;
}
result = mutex_lock_interruptible(&rmutex->mutex);
if (result) {
/* No lock */
return -OCF_ERR_INTR;
}
rmutex->holder = current;
atomic_inc(&rmutex->count);
return 0;
}
static inline int env_rmutex_trylock(env_rmutex *rmutex)
{
if (current == rmutex->holder) {
atomic_inc(&rmutex->count);
return 0;
}
if (mutex_trylock(&rmutex->mutex)) {
/* No lock */
return -OCF_ERR_NO_LOCK;
}
rmutex->holder = current;
atomic_inc(&rmutex->count);
return 0;
}
static inline void env_rmutex_unlock(env_rmutex *rmutex)
{
BUG_ON(current != rmutex->holder);
if (atomic_dec_return(&rmutex->count)) {
return;
}
rmutex->holder = NULL;
mutex_unlock(&rmutex->mutex);
}
static inline int env_rmutex_is_locked(env_rmutex *rmutex)
{
return mutex_is_locked(&rmutex->mutex);
}
static inline void env_rmutex_destroy(env_rmutex *rmutex)
{
}
/* *** RW SEMAPHORE *** */
typedef struct
{
struct rw_semaphore sem;
wait_queue_head_t wq;
} env_rwsem;
static inline int env_rwsem_init(env_rwsem *s)
{
init_rwsem(&s->sem);
init_waitqueue_head(&s->wq);
return 0;
}
static inline void env_rwsem_up_read(env_rwsem *s)
{
up_read(&s->sem);
wake_up_all(&s->wq);
}
static inline void env_rwsem_down_read(env_rwsem *s)
{
down_read(&s->sem);
}
static inline int env_rwsem_down_read_interruptible(env_rwsem *s)
{
return wait_event_interruptible(s->wq,
down_read_trylock(&s->sem)) ? -OCF_ERR_INTR : 0;
}
static inline int env_rwsem_down_read_trylock(env_rwsem *s)
{
return down_read_trylock(&s->sem) ? 0 : -OCF_ERR_NO_LOCK;
}
static inline void env_rwsem_up_write(env_rwsem *s)
{
up_write(&s->sem);
wake_up_all(&s->wq);
}
static inline void env_rwsem_down_write(env_rwsem *s)
{
down_write(&s->sem);
}
static inline int env_rwsem_down_write_interruptible(env_rwsem *s)
{
return wait_event_interruptible(s->wq,
down_write_trylock(&s->sem)) ? -OCF_ERR_INTR : 0;
}
static inline int env_rwsem_down_write_trylock(env_rwsem *s)
{
return down_write_trylock(&s->sem) ? 0 : -OCF_ERR_NO_LOCK;
}
static inline int env_rwsem_is_locked(env_rwsem *s)
{
return rwsem_is_locked(&s->sem);
}
static inline int env_rwsem_destroy(env_rwsem *s)
{
return 0;
}
/* *** COMPLETION *** */
typedef struct completion env_completion;
static inline void env_completion_init(env_completion *completion)
{
init_completion(completion);
}
static inline void env_completion_wait(env_completion *completion)
{
wait_for_completion(completion);
}
static inline void env_completion_complete(env_completion *completion)
{
complete(completion);
}
static inline void env_completion_destroy(env_completion *completion)
{
}
/* *** ATOMIC VARIABLES *** */
typedef atomic_t env_atomic;
typedef atomic64_t env_atomic64;
static inline int env_atomic_read(const env_atomic *a)
{
return atomic_read(a);
}
static inline void env_atomic_set(env_atomic *a, int i)
{
atomic_set(a, i);
}
static inline void env_atomic_add(int i, env_atomic *a)
{
atomic_add(i, a);
}
static inline void env_atomic_sub(int i, env_atomic *a)
{
atomic_sub(i, a);
}
static inline bool env_atomic_sub_and_test(int i, env_atomic *a)
{
return atomic_sub_and_test(i, a);
}
static inline void env_atomic_inc(env_atomic *a)
{
atomic_inc(a);
}
static inline void env_atomic_dec(env_atomic *a)
{
atomic_dec(a);
}
static inline bool env_atomic_dec_and_test(env_atomic *a)
{
return atomic_dec_and_test(a);
}
static inline bool env_atomic_inc_and_test(env_atomic *a)
{
return atomic_inc_and_test(a);
}
static inline int env_atomic_add_return(int i, env_atomic *a)
{
return atomic_add_return(i, a);
}
static inline int env_atomic_sub_return(int i, env_atomic *a)
{
return atomic_sub_return(i, a);
}
static inline int env_atomic_inc_return(env_atomic *a)
{
return atomic_inc_return(a);
}
static inline int env_atomic_dec_return(env_atomic *a)
{
return atomic_dec_return(a);
}
static inline int env_atomic_cmpxchg(env_atomic *a, int old, int new_value)
{
return atomic_cmpxchg(a, old, new_value);
}
static inline int env_atomic_add_unless(env_atomic *a, int i, int u)
{
return atomic_add_unless(a, i, u);
}
static inline u64 env_atomic64_read(const env_atomic64 *a)
{
return atomic64_read(a);
}
static inline void env_atomic64_set(env_atomic64 *a, u64 i)
{
atomic64_set(a, i);
}
static inline void env_atomic64_add(u64 i, env_atomic64 *a)
{
atomic64_add(i, a);
}
static inline void env_atomic64_sub(u64 i, env_atomic64 *a)
{
atomic64_sub(i, a);
}
static inline void env_atomic64_inc(env_atomic64 *a)
{
atomic64_inc(a);
}
static inline void env_atomic64_dec(env_atomic64 *a)
{
atomic64_dec(a);
}
static inline u64 env_atomic64_inc_return(env_atomic64 *a)
{
return atomic64_inc_return(a);
}
static inline u64 env_atomic64_cmpxchg(atomic64_t *a, u64 old, u64 new)
{
return atomic64_cmpxchg(a, old, new);
}
/* *** SPIN LOCKS *** */
typedef spinlock_t env_spinlock;
static inline int env_spinlock_init(env_spinlock *l)
{
spin_lock_init(l);
return 0;
}
static inline void env_spinlock_lock(env_spinlock *l)
{
spin_lock(l);
}
static inline int env_spinlock_trylock(env_spinlock *l)
{
return spin_trylock(l) ? 0 : -OCF_ERR_NO_LOCK;
}
static inline void env_spinlock_unlock(env_spinlock *l)
{
spin_unlock(l);
}
static inline void env_spinlock_lock_irq(env_spinlock *l)
{
spin_lock_irq(l);
}
static inline void env_spinlock_unlock_irq(env_spinlock *l)
{
spin_unlock_irq(l);
}
static inline void env_spinlock_destroy(env_spinlock *l)
{
}
#define env_spinlock_lock_irqsave(l, flags) \
spin_lock_irqsave((l), (flags))
#define env_spinlock_unlock_irqrestore(l, flags) \
spin_unlock_irqrestore((l), (flags))
/* *** RW LOCKS *** */
typedef rwlock_t env_rwlock;
static inline void env_rwlock_init(env_rwlock *l)
{
rwlock_init(l);
}
static inline void env_rwlock_read_lock(env_rwlock *l)
{
read_lock(l);
}
static inline void env_rwlock_read_unlock(env_rwlock *l)
{
read_unlock(l);
}
static inline void env_rwlock_write_lock(env_rwlock *l)
{
write_lock(l);
}
static inline void env_rwlock_write_unlock(env_rwlock *l)
{
write_unlock(l);
}
static inline void env_rwlock_destroy(env_rwlock *l)
{
}
/* *** WAITQUEUE *** */
typedef wait_queue_head_t env_waitqueue;
static inline void env_waitqueue_init(env_waitqueue *w)
{
init_waitqueue_head(w);
}
static inline void env_waitqueue_wake_up(env_waitqueue *w)
{
wake_up(w);
}
#define env_waitqueue_wait(w, condition) \
wait_event_interruptible((w), (condition))
/* *** SCHEDULING *** */
static inline void env_cond_resched(void)
{
cond_resched();
}
static inline int env_in_interrupt(void)
{
return in_interrupt();;
}
/* *** TIME *** */
static inline uint64_t env_get_tick_count(void)
{
return jiffies;
}
static inline uint64_t env_ticks_to_msecs(uint64_t j)
{
return jiffies_to_msecs(j);
}
static inline uint64_t env_ticks_to_nsecs(uint64_t j)
{
return jiffies_to_usecs(j) * NSEC_PER_USEC;
}
static inline bool env_time_after(uint64_t a, uint64_t b)
{
return time_after64(a,b);
}
static inline uint64_t env_ticks_to_secs(uint64_t j)
{
return j >> SHIFT_HZ;
}
static inline uint64_t env_secs_to_ticks(uint64_t j)
{
return j << SHIFT_HZ;
}
/* *** BIT OPERATIONS *** */
static inline void env_bit_set(int nr, volatile void *addr)
{
set_bit(nr, addr);
}
static inline void env_bit_clear(int nr, volatile void *addr)
{
clear_bit(nr, addr);
}
static inline int env_bit_test(int nr, const void *addr)
{
return test_bit(nr, addr);
}
static inline void env_msleep(uint64_t n)
{
msleep(n);
}
/* *** STRING OPERATIONS *** */
#define env_memset(dest, dmax, val) ({ \
memset(dest, val, dmax); \
0; \
})
#define env_memcpy(dest, dmax, src, slen) ({ \
memcpy(dest, src, min_t(int, dmax, slen)); \
0; \
})
#define env_memcmp(s1, s1max, s2, s2max, diff) ({ \
*diff = memcmp(s1, s2, min_t(int, s1max, s2max)); \
0; \
})
#define env_strdup kstrdup
#define env_strnlen(s, smax) strnlen(s, smax)
#define env_strncmp(s1, slen1, s2, slen2) strncmp(s1, s2, \
min_t(size_t, slen1, slen2))
#define env_strncpy(dest, dmax, src, slen) ({ \
strlcpy(dest, src, min_t(int, dmax, slen)); \
0; \
})
/* *** SORTING *** */
void env_sort(void *base, size_t num, size_t size,
int (*cmp_fn)(const void *, const void *),
void (*swap_fn)(void *, void *, int size));
/* *** CRC *** */
static inline uint32_t env_crc32(uint32_t crc, uint8_t const *data, size_t len)
{
return crc32(crc, data, len);
}
/* *** LOGGING *** */
#define ENV_PRIu64 "llu"
#define ENV_WARN(cond, fmt...) WARN(cond, fmt)
#define ENV_WARN_ON(cond) WARN_ON(cond)
#define ENV_BUG() BUG()
#define ENV_BUG_ON(cond) BUG_ON(cond)
/* *** EXECUTION COTNEXT *** */
static inline unsigned env_get_execution_context(void)
{
return get_cpu();
}
static inline void env_put_execution_context(unsigned ctx)
{
put_cpu();
}
static inline unsigned env_get_execution_context_count(void)
{
return num_online_cpus();
}
#endif /* __OCF_ENV_H__ */