Add Godeps for the Prometheus monitoring client library and its dependencies.

See issue #1625 for discussion.
This commit is contained in:
Alex Robinson 2015-02-06 22:21:56 +00:00
parent 617e1ca7de
commit 21f9b83d91
129 changed files with 27487 additions and 0 deletions

43
Godeps/Godeps.json generated
View File

@ -29,6 +29,11 @@
"Comment": "release-96",
"Rev": "98c78185197025f935947caac56a7b6d022f89d2"
},
{
"ImportPath": "code.google.com/p/goprotobuf/proto",
"Comment": "go.r60-163",
"Rev": "9352842ae63ee1d7e74e074ce7bb10370c4b6b9e"
},
{
"ImportPath": "github.com/Sirupsen/logrus",
"Comment": "v0.6.2-10-g51fe59a",
@ -127,6 +132,10 @@
"Comment": "0.1.3-8-g6633656",
"Rev": "6633656539c1639d9d78127b7d47c622b5d7b6dc"
},
{
"ImportPath": "github.com/matttproud/golang_protobuf_extensions/ext",
"Rev": "7a864a042e844af638df17ebbabf8183dace556a"
},
{
"ImportPath": "github.com/miekg/dns",
"Rev": "3f504e8dabd5d562e997d19ce0200aa41973e1b2"
@ -153,6 +162,40 @@
"Comment": "v1.0-28-g8adf9e1730c5",
"Rev": "8adf9e1730c55cdc590de7d49766cb2acc88d8f2"
},
{
"ImportPath": "github.com/prometheus/client_golang/_vendor/goautoneg",
"Comment": "0.1.0-9-g52186fc",
"Rev": "52186fc518809dc9a56502348751e353866b2059"
},
{
"ImportPath": "github.com/prometheus/client_golang/_vendor/perks/quantile",
"Comment": "0.1.0-9-g52186fc",
"Rev": "52186fc518809dc9a56502348751e353866b2059"
},
{
"ImportPath": "github.com/prometheus/client_golang/model",
"Comment": "0.1.0-9-g52186fc",
"Rev": "52186fc518809dc9a56502348751e353866b2059"
},
{
"ImportPath": "github.com/prometheus/client_golang/prometheus",
"Comment": "0.1.0-9-g52186fc",
"Rev": "52186fc518809dc9a56502348751e353866b2059"
},
{
"ImportPath": "github.com/prometheus/client_golang/text",
"Comment": "0.1.0-9-g52186fc",
"Rev": "52186fc518809dc9a56502348751e353866b2059"
},
{
"ImportPath": "github.com/prometheus/client_model/go",
"Comment": "model-0.0.2-10-gbc9454c",
"Rev": "bc9454ca562dc050e060ea61a1c0e562a189850f"
},
{
"ImportPath": "github.com/prometheus/procfs",
"Rev": "92faa308558161acab0ada1db048e9996ecec160"
},
{
"ImportPath": "github.com/racker/perigee",
"Comment": "v0.0.0-18-g0c00cb0",

View File

@ -0,0 +1,40 @@
# Go support for Protocol Buffers - Google's data interchange format
#
# Copyright 2010 The Go Authors. All rights reserved.
# http://code.google.com/p/goprotobuf/
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
install:
go install
test: install generate-test-pbs
go test
generate-test-pbs:
make install && cd testdata && make

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,174 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2011 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Protocol buffer deep copy.
// TODO: MessageSet and RawMessage.
package proto
import (
"log"
"reflect"
"strings"
)
// Clone returns a deep copy of a protocol buffer.
func Clone(pb Message) Message {
in := reflect.ValueOf(pb)
if in.IsNil() {
return pb
}
out := reflect.New(in.Type().Elem())
// out is empty so a merge is a deep copy.
mergeStruct(out.Elem(), in.Elem())
return out.Interface().(Message)
}
// Merge merges src into dst.
// Required and optional fields that are set in src will be set to that value in dst.
// Elements of repeated fields will be appended.
// Merge panics if src and dst are not the same type, or if dst is nil.
func Merge(dst, src Message) {
in := reflect.ValueOf(src)
out := reflect.ValueOf(dst)
if out.IsNil() {
panic("proto: nil destination")
}
if in.Type() != out.Type() {
// Explicit test prior to mergeStruct so that mistyped nils will fail
panic("proto: type mismatch")
}
if in.IsNil() {
// Merging nil into non-nil is a quiet no-op
return
}
mergeStruct(out.Elem(), in.Elem())
}
func mergeStruct(out, in reflect.Value) {
for i := 0; i < in.NumField(); i++ {
f := in.Type().Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
mergeAny(out.Field(i), in.Field(i))
}
if emIn, ok := in.Addr().Interface().(extendableProto); ok {
emOut := out.Addr().Interface().(extendableProto)
mergeExtension(emOut.ExtensionMap(), emIn.ExtensionMap())
}
uf := in.FieldByName("XXX_unrecognized")
if !uf.IsValid() {
return
}
uin := uf.Bytes()
if len(uin) > 0 {
out.FieldByName("XXX_unrecognized").SetBytes(append([]byte(nil), uin...))
}
}
func mergeAny(out, in reflect.Value) {
if in.Type() == protoMessageType {
if !in.IsNil() {
if out.IsNil() {
out.Set(reflect.ValueOf(Clone(in.Interface().(Message))))
} else {
Merge(out.Interface().(Message), in.Interface().(Message))
}
}
return
}
switch in.Kind() {
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Int32, reflect.Int64,
reflect.String, reflect.Uint32, reflect.Uint64:
out.Set(in)
case reflect.Ptr:
if in.IsNil() {
return
}
if out.IsNil() {
out.Set(reflect.New(in.Elem().Type()))
}
mergeAny(out.Elem(), in.Elem())
case reflect.Slice:
if in.IsNil() {
return
}
if in.Type().Elem().Kind() == reflect.Uint8 {
// []byte is a scalar bytes field, not a repeated field.
// Make a deep copy.
// Append to []byte{} instead of []byte(nil) so that we never end up
// with a nil result.
out.SetBytes(append([]byte{}, in.Bytes()...))
return
}
n := in.Len()
if out.IsNil() {
out.Set(reflect.MakeSlice(in.Type(), 0, n))
}
switch in.Type().Elem().Kind() {
case reflect.Bool, reflect.Float32, reflect.Float64, reflect.Int32, reflect.Int64,
reflect.String, reflect.Uint32, reflect.Uint64:
out.Set(reflect.AppendSlice(out, in))
default:
for i := 0; i < n; i++ {
x := reflect.Indirect(reflect.New(in.Type().Elem()))
mergeAny(x, in.Index(i))
out.Set(reflect.Append(out, x))
}
}
case reflect.Struct:
mergeStruct(out, in)
default:
// unknown type, so not a protocol buffer
log.Printf("proto: don't know how to copy %v", in)
}
}
func mergeExtension(out, in map[int32]Extension) {
for extNum, eIn := range in {
eOut := Extension{desc: eIn.desc}
if eIn.value != nil {
v := reflect.New(reflect.TypeOf(eIn.value)).Elem()
mergeAny(v, reflect.ValueOf(eIn.value))
eOut.value = v.Interface()
}
if eIn.enc != nil {
eOut.enc = make([]byte, len(eIn.enc))
copy(eOut.enc, eIn.enc)
}
out[extNum] = eOut
}
}

View File

@ -0,0 +1,202 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2011 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto_test
import (
"testing"
"code.google.com/p/goprotobuf/proto"
pb "./testdata"
)
var cloneTestMessage = &pb.MyMessage{
Count: proto.Int32(42),
Name: proto.String("Dave"),
Pet: []string{"bunny", "kitty", "horsey"},
Inner: &pb.InnerMessage{
Host: proto.String("niles"),
Port: proto.Int32(9099),
Connected: proto.Bool(true),
},
Others: []*pb.OtherMessage{
{
Value: []byte("some bytes"),
},
},
Somegroup: &pb.MyMessage_SomeGroup{
GroupField: proto.Int32(6),
},
RepBytes: [][]byte{[]byte("sham"), []byte("wow")},
}
func init() {
ext := &pb.Ext{
Data: proto.String("extension"),
}
if err := proto.SetExtension(cloneTestMessage, pb.E_Ext_More, ext); err != nil {
panic("SetExtension: " + err.Error())
}
}
func TestClone(t *testing.T) {
m := proto.Clone(cloneTestMessage).(*pb.MyMessage)
if !proto.Equal(m, cloneTestMessage) {
t.Errorf("Clone(%v) = %v", cloneTestMessage, m)
}
// Verify it was a deep copy.
*m.Inner.Port++
if proto.Equal(m, cloneTestMessage) {
t.Error("Mutating clone changed the original")
}
// Byte fields and repeated fields should be copied.
if &m.Pet[0] == &cloneTestMessage.Pet[0] {
t.Error("Pet: repeated field not copied")
}
if &m.Others[0] == &cloneTestMessage.Others[0] {
t.Error("Others: repeated field not copied")
}
if &m.Others[0].Value[0] == &cloneTestMessage.Others[0].Value[0] {
t.Error("Others[0].Value: bytes field not copied")
}
if &m.RepBytes[0] == &cloneTestMessage.RepBytes[0] {
t.Error("RepBytes: repeated field not copied")
}
if &m.RepBytes[0][0] == &cloneTestMessage.RepBytes[0][0] {
t.Error("RepBytes[0]: bytes field not copied")
}
}
func TestCloneNil(t *testing.T) {
var m *pb.MyMessage
if c := proto.Clone(m); !proto.Equal(m, c) {
t.Errorf("Clone(%v) = %v", m, c)
}
}
var mergeTests = []struct {
src, dst, want proto.Message
}{
{
src: &pb.MyMessage{
Count: proto.Int32(42),
},
dst: &pb.MyMessage{
Name: proto.String("Dave"),
},
want: &pb.MyMessage{
Count: proto.Int32(42),
Name: proto.String("Dave"),
},
},
{
src: &pb.MyMessage{
Inner: &pb.InnerMessage{
Host: proto.String("hey"),
Connected: proto.Bool(true),
},
Pet: []string{"horsey"},
Others: []*pb.OtherMessage{
{
Value: []byte("some bytes"),
},
},
},
dst: &pb.MyMessage{
Inner: &pb.InnerMessage{
Host: proto.String("niles"),
Port: proto.Int32(9099),
},
Pet: []string{"bunny", "kitty"},
Others: []*pb.OtherMessage{
{
Key: proto.Int64(31415926535),
},
{
// Explicitly test a src=nil field
Inner: nil,
},
},
},
want: &pb.MyMessage{
Inner: &pb.InnerMessage{
Host: proto.String("hey"),
Connected: proto.Bool(true),
Port: proto.Int32(9099),
},
Pet: []string{"bunny", "kitty", "horsey"},
Others: []*pb.OtherMessage{
{
Key: proto.Int64(31415926535),
},
{},
{
Value: []byte("some bytes"),
},
},
},
},
{
src: &pb.MyMessage{
RepBytes: [][]byte{[]byte("wow")},
},
dst: &pb.MyMessage{
Somegroup: &pb.MyMessage_SomeGroup{
GroupField: proto.Int32(6),
},
RepBytes: [][]byte{[]byte("sham")},
},
want: &pb.MyMessage{
Somegroup: &pb.MyMessage_SomeGroup{
GroupField: proto.Int32(6),
},
RepBytes: [][]byte{[]byte("sham"), []byte("wow")},
},
},
// Check that a scalar bytes field replaces rather than appends.
{
src: &pb.OtherMessage{Value: []byte("foo")},
dst: &pb.OtherMessage{Value: []byte("bar")},
want: &pb.OtherMessage{Value: []byte("foo")},
},
}
func TestMerge(t *testing.T) {
for _, m := range mergeTests {
got := proto.Clone(m.dst)
proto.Merge(got, m.src)
if !proto.Equal(got, m.want) {
t.Errorf("Merge(%v, %v)\n got %v\nwant %v\n", m.dst, m.src, got, m.want)
}
}
}

View File

@ -0,0 +1,721 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
/*
* Routines for decoding protocol buffer data to construct in-memory representations.
*/
import (
"errors"
"fmt"
"io"
"os"
"reflect"
)
// errOverflow is returned when an integer is too large to be represented.
var errOverflow = errors.New("proto: integer overflow")
// The fundamental decoders that interpret bytes on the wire.
// Those that take integer types all return uint64 and are
// therefore of type valueDecoder.
// DecodeVarint reads a varint-encoded integer from the slice.
// It returns the integer and the number of bytes consumed, or
// zero if there is not enough.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func DecodeVarint(buf []byte) (x uint64, n int) {
// x, n already 0
for shift := uint(0); shift < 64; shift += 7 {
if n >= len(buf) {
return 0, 0
}
b := uint64(buf[n])
n++
x |= (b & 0x7F) << shift
if (b & 0x80) == 0 {
return x, n
}
}
// The number is too large to represent in a 64-bit value.
return 0, 0
}
// DecodeVarint reads a varint-encoded integer from the Buffer.
// This is the format for the
// int32, int64, uint32, uint64, bool, and enum
// protocol buffer types.
func (p *Buffer) DecodeVarint() (x uint64, err error) {
// x, err already 0
i := p.index
l := len(p.buf)
for shift := uint(0); shift < 64; shift += 7 {
if i >= l {
err = io.ErrUnexpectedEOF
return
}
b := p.buf[i]
i++
x |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
p.index = i
return
}
}
// The number is too large to represent in a 64-bit value.
err = errOverflow
return
}
// DecodeFixed64 reads a 64-bit integer from the Buffer.
// This is the format for the
// fixed64, sfixed64, and double protocol buffer types.
func (p *Buffer) DecodeFixed64() (x uint64, err error) {
// x, err already 0
i := p.index + 8
if i < 0 || i > len(p.buf) {
err = io.ErrUnexpectedEOF
return
}
p.index = i
x = uint64(p.buf[i-8])
x |= uint64(p.buf[i-7]) << 8
x |= uint64(p.buf[i-6]) << 16
x |= uint64(p.buf[i-5]) << 24
x |= uint64(p.buf[i-4]) << 32
x |= uint64(p.buf[i-3]) << 40
x |= uint64(p.buf[i-2]) << 48
x |= uint64(p.buf[i-1]) << 56
return
}
// DecodeFixed32 reads a 32-bit integer from the Buffer.
// This is the format for the
// fixed32, sfixed32, and float protocol buffer types.
func (p *Buffer) DecodeFixed32() (x uint64, err error) {
// x, err already 0
i := p.index + 4
if i < 0 || i > len(p.buf) {
err = io.ErrUnexpectedEOF
return
}
p.index = i
x = uint64(p.buf[i-4])
x |= uint64(p.buf[i-3]) << 8
x |= uint64(p.buf[i-2]) << 16
x |= uint64(p.buf[i-1]) << 24
return
}
// DecodeZigzag64 reads a zigzag-encoded 64-bit integer
// from the Buffer.
// This is the format used for the sint64 protocol buffer type.
func (p *Buffer) DecodeZigzag64() (x uint64, err error) {
x, err = p.DecodeVarint()
if err != nil {
return
}
x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63)
return
}
// DecodeZigzag32 reads a zigzag-encoded 32-bit integer
// from the Buffer.
// This is the format used for the sint32 protocol buffer type.
func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
x, err = p.DecodeVarint()
if err != nil {
return
}
x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31))
return
}
// These are not ValueDecoders: they produce an array of bytes or a string.
// bytes, embedded messages
// DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
// This is the format used for the bytes protocol buffer
// type and for embedded messages.
func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) {
n, err := p.DecodeVarint()
if err != nil {
return
}
nb := int(n)
if nb < 0 {
return nil, fmt.Errorf("proto: bad byte length %d", nb)
}
end := p.index + nb
if end < p.index || end > len(p.buf) {
return nil, io.ErrUnexpectedEOF
}
if !alloc {
// todo: check if can get more uses of alloc=false
buf = p.buf[p.index:end]
p.index += nb
return
}
buf = make([]byte, nb)
copy(buf, p.buf[p.index:])
p.index += nb
return
}
// DecodeStringBytes reads an encoded string from the Buffer.
// This is the format used for the proto2 string type.
func (p *Buffer) DecodeStringBytes() (s string, err error) {
buf, err := p.DecodeRawBytes(false)
if err != nil {
return
}
return string(buf), nil
}
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
// If the protocol buffer has extensions, and the field matches, add it as an extension.
// Otherwise, if the XXX_unrecognized field exists, append the skipped data there.
func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error {
oi := o.index
err := o.skip(t, tag, wire)
if err != nil {
return err
}
if !unrecField.IsValid() {
return nil
}
ptr := structPointer_Bytes(base, unrecField)
// Add the skipped field to struct field
obuf := o.buf
o.buf = *ptr
o.EncodeVarint(uint64(tag<<3 | wire))
*ptr = append(o.buf, obuf[oi:o.index]...)
o.buf = obuf
return nil
}
// Skip the next item in the buffer. Its wire type is decoded and presented as an argument.
func (o *Buffer) skip(t reflect.Type, tag, wire int) error {
var u uint64
var err error
switch wire {
case WireVarint:
_, err = o.DecodeVarint()
case WireFixed64:
_, err = o.DecodeFixed64()
case WireBytes:
_, err = o.DecodeRawBytes(false)
case WireFixed32:
_, err = o.DecodeFixed32()
case WireStartGroup:
for {
u, err = o.DecodeVarint()
if err != nil {
break
}
fwire := int(u & 0x7)
if fwire == WireEndGroup {
break
}
ftag := int(u >> 3)
err = o.skip(t, ftag, fwire)
if err != nil {
break
}
}
default:
err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t)
}
return err
}
// Unmarshaler is the interface representing objects that can
// unmarshal themselves. The method should reset the receiver before
// decoding starts. The argument points to data that may be
// overwritten, so implementations should not keep references to the
// buffer.
type Unmarshaler interface {
Unmarshal([]byte) error
}
// Unmarshal parses the protocol buffer representation in buf and places the
// decoded result in pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable.
//
// Unmarshal resets pb before starting to unmarshal, so any
// existing data in pb is always removed. Use UnmarshalMerge
// to preserve and append to existing data.
func Unmarshal(buf []byte, pb Message) error {
pb.Reset()
return UnmarshalMerge(buf, pb)
}
// UnmarshalMerge parses the protocol buffer representation in buf and
// writes the decoded result to pb. If the struct underlying pb does not match
// the data in buf, the results can be unpredictable.
//
// UnmarshalMerge merges into existing data in pb.
// Most code should use Unmarshal instead.
func UnmarshalMerge(buf []byte, pb Message) error {
// If the object can unmarshal itself, let it.
if u, ok := pb.(Unmarshaler); ok {
return u.Unmarshal(buf)
}
return NewBuffer(buf).Unmarshal(pb)
}
// Unmarshal parses the protocol buffer representation in the
// Buffer and places the decoded result in pb. If the struct
// underlying pb does not match the data in the buffer, the results can be
// unpredictable.
func (p *Buffer) Unmarshal(pb Message) error {
// If the object can unmarshal itself, let it.
if u, ok := pb.(Unmarshaler); ok {
err := u.Unmarshal(p.buf[p.index:])
p.index = len(p.buf)
return err
}
typ, base, err := getbase(pb)
if err != nil {
return err
}
err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base)
if collectStats {
stats.Decode++
}
return err
}
// unmarshalType does the work of unmarshaling a structure.
func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error {
var state errorState
required, reqFields := prop.reqCount, uint64(0)
var err error
for err == nil && o.index < len(o.buf) {
oi := o.index
var u uint64
u, err = o.DecodeVarint()
if err != nil {
break
}
wire := int(u & 0x7)
if wire == WireEndGroup {
if is_group {
return nil // input is satisfied
}
return fmt.Errorf("proto: %s: wiretype end group for non-group", st)
}
tag := int(u >> 3)
if tag <= 0 {
return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire)
}
fieldnum, ok := prop.decoderTags.get(tag)
if !ok {
// Maybe it's an extension?
if prop.extendable {
if e := structPointer_Interface(base, st).(extendableProto); isExtensionField(e, int32(tag)) {
if err = o.skip(st, tag, wire); err == nil {
ext := e.ExtensionMap()[int32(tag)] // may be missing
ext.enc = append(ext.enc, o.buf[oi:o.index]...)
e.ExtensionMap()[int32(tag)] = ext
}
continue
}
}
err = o.skipAndSave(st, tag, wire, base, prop.unrecField)
continue
}
p := prop.Prop[fieldnum]
if p.dec == nil {
fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name)
continue
}
dec := p.dec
if wire != WireStartGroup && wire != p.WireType {
if wire == WireBytes && p.packedDec != nil {
// a packable field
dec = p.packedDec
} else {
err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType)
continue
}
}
decErr := dec(o, p, base)
if decErr != nil && !state.shouldContinue(decErr, p) {
err = decErr
}
if err == nil && p.Required {
// Successfully decoded a required field.
if tag <= 64 {
// use bitmap for fields 1-64 to catch field reuse.
var mask uint64 = 1 << uint64(tag-1)
if reqFields&mask == 0 {
// new required field
reqFields |= mask
required--
}
} else {
// This is imprecise. It can be fooled by a required field
// with a tag > 64 that is encoded twice; that's very rare.
// A fully correct implementation would require allocating
// a data structure, which we would like to avoid.
required--
}
}
}
if err == nil {
if is_group {
return io.ErrUnexpectedEOF
}
if state.err != nil {
return state.err
}
if required > 0 {
// Not enough information to determine the exact field. If we use extra
// CPU, we could determine the field only if the missing required field
// has a tag <= 64 and we check reqFields.
return &RequiredNotSetError{"{Unknown}"}
}
}
return err
}
// Individual type decoders
// For each,
// u is the decoded value,
// v is a pointer to the field (pointer) in the struct
// Sizes of the pools to allocate inside the Buffer.
// The goal is modest amortization and allocation
// on at least 16-byte boundaries.
const (
boolPoolSize = 16
uint32PoolSize = 8
uint64PoolSize = 4
)
// Decode a bool.
func (o *Buffer) dec_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
if len(o.bools) == 0 {
o.bools = make([]bool, boolPoolSize)
}
o.bools[0] = u != 0
*structPointer_Bool(base, p.field) = &o.bools[0]
o.bools = o.bools[1:]
return nil
}
// Decode an int32.
func (o *Buffer) dec_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word32_Set(structPointer_Word32(base, p.field), o, uint32(u))
return nil
}
// Decode an int64.
func (o *Buffer) dec_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
word64_Set(structPointer_Word64(base, p.field), o, u)
return nil
}
// Decode a string.
func (o *Buffer) dec_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
sp := new(string)
*sp = s
*structPointer_String(base, p.field) = sp
return nil
}
// Decode a slice of bytes ([]byte).
func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
*structPointer_Bytes(base, p.field) = b
return nil
}
// Decode a slice of bools ([]bool).
func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
v := structPointer_BoolSlice(base, p.field)
*v = append(*v, u != 0)
return nil
}
// Decode a slice of bools ([]bool) in packed format.
func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error {
v := structPointer_BoolSlice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded bools
y := *v
for i := 0; i < nb; i++ {
u, err := p.valDec(o)
if err != nil {
return err
}
y = append(y, u != 0)
}
*v = y
return nil
}
// Decode a slice of int32s ([]int32).
func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word32Slice(base, p.field).Append(uint32(u))
return nil
}
// Decode a slice of int32s ([]int32) in packed format.
func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error {
v := structPointer_Word32Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int32s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(uint32(u))
}
return nil
}
// Decode a slice of int64s ([]int64).
func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error {
u, err := p.valDec(o)
if err != nil {
return err
}
structPointer_Word64Slice(base, p.field).Append(u)
return nil
}
// Decode a slice of int64s ([]int64) in packed format.
func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error {
v := structPointer_Word64Slice(base, p.field)
nn, err := o.DecodeVarint()
if err != nil {
return err
}
nb := int(nn) // number of bytes of encoded int64s
fin := o.index + nb
if fin < o.index {
return errOverflow
}
for o.index < fin {
u, err := p.valDec(o)
if err != nil {
return err
}
v.Append(u)
}
return nil
}
// Decode a slice of strings ([]string).
func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error {
s, err := o.DecodeStringBytes()
if err != nil {
return err
}
v := structPointer_StringSlice(base, p.field)
*v = append(*v, s)
return nil
}
// Decode a slice of slice of bytes ([][]byte).
func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error {
b, err := o.DecodeRawBytes(true)
if err != nil {
return err
}
v := structPointer_BytesSlice(base, p.field)
*v = append(*v, b)
return nil
}
// Decode a group.
func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error {
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
return o.unmarshalType(p.stype, p.sprop, true, bas)
}
// Decode an embedded message.
func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) {
raw, e := o.DecodeRawBytes(false)
if e != nil {
return e
}
bas := structPointer_GetStructPointer(base, p.field)
if structPointer_IsNil(bas) {
// allocate new nested message
bas = toStructPointer(reflect.New(p.stype))
structPointer_SetStructPointer(base, p.field, bas)
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := structPointer_Interface(bas, p.stype)
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, false, bas)
o.buf = obuf
o.index = oi
return err
}
// Decode a slice of embedded messages.
func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, false, base)
}
// Decode a slice of embedded groups.
func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error {
return o.dec_slice_struct(p, true, base)
}
// Decode a slice of structs ([]*struct).
func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error {
v := reflect.New(p.stype)
bas := toStructPointer(v)
structPointer_StructPointerSlice(base, p.field).Append(bas)
if is_group {
err := o.unmarshalType(p.stype, p.sprop, is_group, bas)
return err
}
raw, err := o.DecodeRawBytes(false)
if err != nil {
return err
}
// If the object can unmarshal itself, let it.
if p.isUnmarshaler {
iv := v.Interface()
return iv.(Unmarshaler).Unmarshal(raw)
}
obuf := o.buf
oi := o.index
o.buf = raw
o.index = 0
err = o.unmarshalType(p.stype, p.sprop, is_group, bas)
o.buf = obuf
o.index = oi
return err
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,241 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2011 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Protocol buffer comparison.
// TODO: MessageSet.
package proto
import (
"bytes"
"log"
"reflect"
"strings"
)
/*
Equal returns true iff protocol buffers a and b are equal.
The arguments must both be pointers to protocol buffer structs.
Equality is defined in this way:
- Two messages are equal iff they are the same type,
corresponding fields are equal, unknown field sets
are equal, and extensions sets are equal.
- Two set scalar fields are equal iff their values are equal.
If the fields are of a floating-point type, remember that
NaN != x for all x, including NaN.
- Two repeated fields are equal iff their lengths are the same,
and their corresponding elements are equal (a "bytes" field,
although represented by []byte, is not a repeated field)
- Two unset fields are equal.
- Two unknown field sets are equal if their current
encoded state is equal.
- Two extension sets are equal iff they have corresponding
elements that are pairwise equal.
- Every other combination of things are not equal.
The return value is undefined if a and b are not protocol buffers.
*/
func Equal(a, b Message) bool {
if a == nil || b == nil {
return a == b
}
v1, v2 := reflect.ValueOf(a), reflect.ValueOf(b)
if v1.Type() != v2.Type() {
return false
}
if v1.Kind() == reflect.Ptr {
if v1.IsNil() {
return v2.IsNil()
}
if v2.IsNil() {
return false
}
v1, v2 = v1.Elem(), v2.Elem()
}
if v1.Kind() != reflect.Struct {
return false
}
return equalStruct(v1, v2)
}
// v1 and v2 are known to have the same type.
func equalStruct(v1, v2 reflect.Value) bool {
for i := 0; i < v1.NumField(); i++ {
f := v1.Type().Field(i)
if strings.HasPrefix(f.Name, "XXX_") {
continue
}
f1, f2 := v1.Field(i), v2.Field(i)
if f.Type.Kind() == reflect.Ptr {
if n1, n2 := f1.IsNil(), f2.IsNil(); n1 && n2 {
// both unset
continue
} else if n1 != n2 {
// set/unset mismatch
return false
}
b1, ok := f1.Interface().(raw)
if ok {
b2 := f2.Interface().(raw)
// RawMessage
if !bytes.Equal(b1.Bytes(), b2.Bytes()) {
return false
}
continue
}
f1, f2 = f1.Elem(), f2.Elem()
}
if !equalAny(f1, f2) {
return false
}
}
if em1 := v1.FieldByName("XXX_extensions"); em1.IsValid() {
em2 := v2.FieldByName("XXX_extensions")
if !equalExtensions(v1.Type(), em1.Interface().(map[int32]Extension), em2.Interface().(map[int32]Extension)) {
return false
}
}
uf := v1.FieldByName("XXX_unrecognized")
if !uf.IsValid() {
return true
}
u1 := uf.Bytes()
u2 := v2.FieldByName("XXX_unrecognized").Bytes()
if !bytes.Equal(u1, u2) {
return false
}
return true
}
// v1 and v2 are known to have the same type.
func equalAny(v1, v2 reflect.Value) bool {
if v1.Type() == protoMessageType {
m1, _ := v1.Interface().(Message)
m2, _ := v2.Interface().(Message)
return Equal(m1, m2)
}
switch v1.Kind() {
case reflect.Bool:
return v1.Bool() == v2.Bool()
case reflect.Float32, reflect.Float64:
return v1.Float() == v2.Float()
case reflect.Int32, reflect.Int64:
return v1.Int() == v2.Int()
case reflect.Ptr:
return equalAny(v1.Elem(), v2.Elem())
case reflect.Slice:
if v1.Type().Elem().Kind() == reflect.Uint8 {
// short circuit: []byte
if v1.IsNil() != v2.IsNil() {
return false
}
return bytes.Equal(v1.Interface().([]byte), v2.Interface().([]byte))
}
if v1.Len() != v2.Len() {
return false
}
for i := 0; i < v1.Len(); i++ {
if !equalAny(v1.Index(i), v2.Index(i)) {
return false
}
}
return true
case reflect.String:
return v1.Interface().(string) == v2.Interface().(string)
case reflect.Struct:
return equalStruct(v1, v2)
case reflect.Uint32, reflect.Uint64:
return v1.Uint() == v2.Uint()
}
// unknown type, so not a protocol buffer
log.Printf("proto: don't know how to compare %v", v1)
return false
}
// base is the struct type that the extensions are based on.
// em1 and em2 are extension maps.
func equalExtensions(base reflect.Type, em1, em2 map[int32]Extension) bool {
if len(em1) != len(em2) {
return false
}
for extNum, e1 := range em1 {
e2, ok := em2[extNum]
if !ok {
return false
}
m1, m2 := e1.value, e2.value
if m1 != nil && m2 != nil {
// Both are unencoded.
if !equalAny(reflect.ValueOf(m1), reflect.ValueOf(m2)) {
return false
}
continue
}
// At least one is encoded. To do a semantically correct comparison
// we need to unmarshal them first.
var desc *ExtensionDesc
if m := extensionMaps[base]; m != nil {
desc = m[extNum]
}
if desc == nil {
log.Printf("proto: don't know how to compare extension %d of %v", extNum, base)
continue
}
var err error
if m1 == nil {
m1, err = decodeExtension(e1.enc, desc)
}
if m2 == nil && err == nil {
m2, err = decodeExtension(e2.enc, desc)
}
if err != nil {
// The encoded form is invalid.
log.Printf("proto: badly encoded extension %d of %v: %v", extNum, base, err)
return false
}
if !equalAny(reflect.ValueOf(m1), reflect.ValueOf(m2)) {
return false
}
}
return true
}

View File

@ -0,0 +1,166 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2011 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto_test
import (
"testing"
pb "./testdata"
. "code.google.com/p/goprotobuf/proto"
)
// Four identical base messages.
// The init function adds extensions to some of them.
var messageWithoutExtension = &pb.MyMessage{Count: Int32(7)}
var messageWithExtension1a = &pb.MyMessage{Count: Int32(7)}
var messageWithExtension1b = &pb.MyMessage{Count: Int32(7)}
var messageWithExtension2 = &pb.MyMessage{Count: Int32(7)}
// Two messages with non-message extensions.
var messageWithInt32Extension1 = &pb.MyMessage{Count: Int32(8)}
var messageWithInt32Extension2 = &pb.MyMessage{Count: Int32(8)}
func init() {
ext1 := &pb.Ext{Data: String("Kirk")}
ext2 := &pb.Ext{Data: String("Picard")}
// messageWithExtension1a has ext1, but never marshals it.
if err := SetExtension(messageWithExtension1a, pb.E_Ext_More, ext1); err != nil {
panic("SetExtension on 1a failed: " + err.Error())
}
// messageWithExtension1b is the unmarshaled form of messageWithExtension1a.
if err := SetExtension(messageWithExtension1b, pb.E_Ext_More, ext1); err != nil {
panic("SetExtension on 1b failed: " + err.Error())
}
buf, err := Marshal(messageWithExtension1b)
if err != nil {
panic("Marshal of 1b failed: " + err.Error())
}
messageWithExtension1b.Reset()
if err := Unmarshal(buf, messageWithExtension1b); err != nil {
panic("Unmarshal of 1b failed: " + err.Error())
}
// messageWithExtension2 has ext2.
if err := SetExtension(messageWithExtension2, pb.E_Ext_More, ext2); err != nil {
panic("SetExtension on 2 failed: " + err.Error())
}
if err := SetExtension(messageWithInt32Extension1, pb.E_Ext_Number, Int32(23)); err != nil {
panic("SetExtension on Int32-1 failed: " + err.Error())
}
if err := SetExtension(messageWithInt32Extension1, pb.E_Ext_Number, Int32(24)); err != nil {
panic("SetExtension on Int32-2 failed: " + err.Error())
}
}
var EqualTests = []struct {
desc string
a, b Message
exp bool
}{
{"different types", &pb.GoEnum{}, &pb.GoTestField{}, false},
{"equal empty", &pb.GoEnum{}, &pb.GoEnum{}, true},
{"nil vs nil", nil, nil, true},
{"typed nil vs typed nil", (*pb.GoEnum)(nil), (*pb.GoEnum)(nil), true},
{"typed nil vs empty", (*pb.GoEnum)(nil), &pb.GoEnum{}, false},
{"different typed nil", (*pb.GoEnum)(nil), (*pb.GoTestField)(nil), false},
{"one set field, one unset field", &pb.GoTestField{Label: String("foo")}, &pb.GoTestField{}, false},
{"one set field zero, one unset field", &pb.GoTest{Param: Int32(0)}, &pb.GoTest{}, false},
{"different set fields", &pb.GoTestField{Label: String("foo")}, &pb.GoTestField{Label: String("bar")}, false},
{"equal set", &pb.GoTestField{Label: String("foo")}, &pb.GoTestField{Label: String("foo")}, true},
{"repeated, one set", &pb.GoTest{F_Int32Repeated: []int32{2, 3}}, &pb.GoTest{}, false},
{"repeated, different length", &pb.GoTest{F_Int32Repeated: []int32{2, 3}}, &pb.GoTest{F_Int32Repeated: []int32{2}}, false},
{"repeated, different value", &pb.GoTest{F_Int32Repeated: []int32{2}}, &pb.GoTest{F_Int32Repeated: []int32{3}}, false},
{"repeated, equal", &pb.GoTest{F_Int32Repeated: []int32{2, 4}}, &pb.GoTest{F_Int32Repeated: []int32{2, 4}}, true},
{"repeated, nil equal nil", &pb.GoTest{F_Int32Repeated: nil}, &pb.GoTest{F_Int32Repeated: nil}, true},
{"repeated, nil equal empty", &pb.GoTest{F_Int32Repeated: nil}, &pb.GoTest{F_Int32Repeated: []int32{}}, true},
{"repeated, empty equal nil", &pb.GoTest{F_Int32Repeated: []int32{}}, &pb.GoTest{F_Int32Repeated: nil}, true},
{
"nested, different",
&pb.GoTest{RequiredField: &pb.GoTestField{Label: String("foo")}},
&pb.GoTest{RequiredField: &pb.GoTestField{Label: String("bar")}},
false,
},
{
"nested, equal",
&pb.GoTest{RequiredField: &pb.GoTestField{Label: String("wow")}},
&pb.GoTest{RequiredField: &pb.GoTestField{Label: String("wow")}},
true,
},
{"bytes", &pb.OtherMessage{Value: []byte("foo")}, &pb.OtherMessage{Value: []byte("foo")}, true},
{"bytes, empty", &pb.OtherMessage{Value: []byte{}}, &pb.OtherMessage{Value: []byte{}}, true},
{"bytes, empty vs nil", &pb.OtherMessage{Value: []byte{}}, &pb.OtherMessage{Value: nil}, false},
{
"repeated bytes",
&pb.MyMessage{RepBytes: [][]byte{[]byte("sham"), []byte("wow")}},
&pb.MyMessage{RepBytes: [][]byte{[]byte("sham"), []byte("wow")}},
true,
},
{"extension vs. no extension", messageWithoutExtension, messageWithExtension1a, false},
{"extension vs. same extension", messageWithExtension1a, messageWithExtension1b, true},
{"extension vs. different extension", messageWithExtension1a, messageWithExtension2, false},
{"int32 extension vs. itself", messageWithInt32Extension1, messageWithInt32Extension1, true},
{"int32 extension vs. a different int32", messageWithInt32Extension1, messageWithInt32Extension2, false},
{
"message with group",
&pb.MyMessage{
Count: Int32(1),
Somegroup: &pb.MyMessage_SomeGroup{
GroupField: Int32(5),
},
},
&pb.MyMessage{
Count: Int32(1),
Somegroup: &pb.MyMessage_SomeGroup{
GroupField: Int32(5),
},
},
true,
},
}
func TestEqual(t *testing.T) {
for _, tc := range EqualTests {
if res := Equal(tc.a, tc.b); res != tc.exp {
t.Errorf("%v: Equal(%v, %v) = %v, want %v", tc.desc, tc.a, tc.b, res, tc.exp)
}
}
}

View File

@ -0,0 +1,353 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
/*
* Types and routines for supporting protocol buffer extensions.
*/
import (
"errors"
"reflect"
"strconv"
"sync"
)
// ErrMissingExtension is the error returned by GetExtension if the named extension is not in the message.
var ErrMissingExtension = errors.New("proto: missing extension")
// ExtensionRange represents a range of message extensions for a protocol buffer.
// Used in code generated by the protocol compiler.
type ExtensionRange struct {
Start, End int32 // both inclusive
}
// extendableProto is an interface implemented by any protocol buffer that may be extended.
type extendableProto interface {
Message
ExtensionRangeArray() []ExtensionRange
ExtensionMap() map[int32]Extension
}
var extendableProtoType = reflect.TypeOf((*extendableProto)(nil)).Elem()
// ExtensionDesc represents an extension specification.
// Used in generated code from the protocol compiler.
type ExtensionDesc struct {
ExtendedType Message // nil pointer to the type that is being extended
ExtensionType interface{} // nil pointer to the extension type
Field int32 // field number
Name string // fully-qualified name of extension, for text formatting
Tag string // protobuf tag style
}
func (ed *ExtensionDesc) repeated() bool {
t := reflect.TypeOf(ed.ExtensionType)
return t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
}
// Extension represents an extension in a message.
type Extension struct {
// When an extension is stored in a message using SetExtension
// only desc and value are set. When the message is marshaled
// enc will be set to the encoded form of the message.
//
// When a message is unmarshaled and contains extensions, each
// extension will have only enc set. When such an extension is
// accessed using GetExtension (or GetExtensions) desc and value
// will be set.
desc *ExtensionDesc
value interface{}
enc []byte
}
// SetRawExtension is for testing only.
func SetRawExtension(base extendableProto, id int32, b []byte) {
base.ExtensionMap()[id] = Extension{enc: b}
}
// isExtensionField returns true iff the given field number is in an extension range.
func isExtensionField(pb extendableProto, field int32) bool {
for _, er := range pb.ExtensionRangeArray() {
if er.Start <= field && field <= er.End {
return true
}
}
return false
}
// checkExtensionTypes checks that the given extension is valid for pb.
func checkExtensionTypes(pb extendableProto, extension *ExtensionDesc) error {
// Check the extended type.
if a, b := reflect.TypeOf(pb), reflect.TypeOf(extension.ExtendedType); a != b {
return errors.New("proto: bad extended type; " + b.String() + " does not extend " + a.String())
}
// Check the range.
if !isExtensionField(pb, extension.Field) {
return errors.New("proto: bad extension number; not in declared ranges")
}
return nil
}
// extPropKey is sufficient to uniquely identify an extension.
type extPropKey struct {
base reflect.Type
field int32
}
var extProp = struct {
sync.RWMutex
m map[extPropKey]*Properties
}{
m: make(map[extPropKey]*Properties),
}
func extensionProperties(ed *ExtensionDesc) *Properties {
key := extPropKey{base: reflect.TypeOf(ed.ExtendedType), field: ed.Field}
extProp.RLock()
if prop, ok := extProp.m[key]; ok {
extProp.RUnlock()
return prop
}
extProp.RUnlock()
extProp.Lock()
defer extProp.Unlock()
// Check again.
if prop, ok := extProp.m[key]; ok {
return prop
}
prop := new(Properties)
prop.Init(reflect.TypeOf(ed.ExtensionType), "unknown_name", ed.Tag, nil)
extProp.m[key] = prop
return prop
}
// encodeExtensionMap encodes any unmarshaled (unencoded) extensions in m.
func encodeExtensionMap(m map[int32]Extension) error {
for k, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
p := NewBuffer(nil)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
if err := props.enc(p, props, toStructPointer(x)); err != nil {
return err
}
e.enc = p.buf
m[k] = e
}
return nil
}
func sizeExtensionMap(m map[int32]Extension) (n int) {
for _, e := range m {
if e.value == nil || e.desc == nil {
// Extension is only in its encoded form.
n += len(e.enc)
continue
}
// We don't skip extensions that have an encoded form set,
// because the extension value may have been mutated after
// the last time this function was called.
et := reflect.TypeOf(e.desc.ExtensionType)
props := extensionProperties(e.desc)
// If e.value has type T, the encoder expects a *struct{ X T }.
// Pass a *T with a zero field and hope it all works out.
x := reflect.New(et)
x.Elem().Set(reflect.ValueOf(e.value))
n += props.size(props, toStructPointer(x))
}
return
}
// HasExtension returns whether the given extension is present in pb.
func HasExtension(pb extendableProto, extension *ExtensionDesc) bool {
// TODO: Check types, field numbers, etc.?
_, ok := pb.ExtensionMap()[extension.Field]
return ok
}
// ClearExtension removes the given extension from pb.
func ClearExtension(pb extendableProto, extension *ExtensionDesc) {
// TODO: Check types, field numbers, etc.?
delete(pb.ExtensionMap(), extension.Field)
}
// GetExtension parses and returns the given extension of pb.
// If the extension is not present it returns ErrMissingExtension.
func GetExtension(pb extendableProto, extension *ExtensionDesc) (interface{}, error) {
if err := checkExtensionTypes(pb, extension); err != nil {
return nil, err
}
emap := pb.ExtensionMap()
e, ok := emap[extension.Field]
if !ok {
return nil, ErrMissingExtension
}
if e.value != nil {
// Already decoded. Check the descriptor, though.
if e.desc != extension {
// This shouldn't happen. If it does, it means that
// GetExtension was called twice with two different
// descriptors with the same field number.
return nil, errors.New("proto: descriptor conflict")
}
return e.value, nil
}
v, err := decodeExtension(e.enc, extension)
if err != nil {
return nil, err
}
// Remember the decoded version and drop the encoded version.
// That way it is safe to mutate what we return.
e.value = v
e.desc = extension
e.enc = nil
emap[extension.Field] = e
return e.value, nil
}
// decodeExtension decodes an extension encoded in b.
func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {
o := NewBuffer(b)
t := reflect.TypeOf(extension.ExtensionType)
rep := extension.repeated()
props := extensionProperties(extension)
// t is a pointer to a struct, pointer to basic type or a slice.
// Allocate a "field" to store the pointer/slice itself; the
// pointer/slice will be stored here. We pass
// the address of this field to props.dec.
// This passes a zero field and a *t and lets props.dec
// interpret it as a *struct{ x t }.
value := reflect.New(t).Elem()
for {
// Discard wire type and field number varint. It isn't needed.
if _, err := o.DecodeVarint(); err != nil {
return nil, err
}
if err := props.dec(o, props, toStructPointer(value.Addr())); err != nil {
return nil, err
}
if !rep || o.index >= len(o.buf) {
break
}
}
return value.Interface(), nil
}
// GetExtensions returns a slice of the extensions present in pb that are also listed in es.
// The returned slice has the same length as es; missing extensions will appear as nil elements.
func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, err error) {
epb, ok := pb.(extendableProto)
if !ok {
err = errors.New("proto: not an extendable proto")
return
}
extensions = make([]interface{}, len(es))
for i, e := range es {
extensions[i], err = GetExtension(epb, e)
if err == ErrMissingExtension {
err = nil
}
if err != nil {
return
}
}
return
}
// SetExtension sets the specified extension of pb to the specified value.
func SetExtension(pb extendableProto, extension *ExtensionDesc, value interface{}) error {
if err := checkExtensionTypes(pb, extension); err != nil {
return err
}
typ := reflect.TypeOf(extension.ExtensionType)
if typ != reflect.TypeOf(value) {
return errors.New("proto: bad extension value type")
}
pb.ExtensionMap()[extension.Field] = Extension{desc: extension, value: value}
return nil
}
// A global registry of extensions.
// The generated code will register the generated descriptors by calling RegisterExtension.
var extensionMaps = make(map[reflect.Type]map[int32]*ExtensionDesc)
// RegisterExtension is called from the generated code.
func RegisterExtension(desc *ExtensionDesc) {
st := reflect.TypeOf(desc.ExtendedType).Elem()
m := extensionMaps[st]
if m == nil {
m = make(map[int32]*ExtensionDesc)
extensionMaps[st] = m
}
if _, ok := m[desc.Field]; ok {
panic("proto: duplicate extension registered: " + st.String() + " " + strconv.Itoa(int(desc.Field)))
}
m[desc.Field] = desc
}
// RegisteredExtensions returns a map of the registered extensions of a
// protocol buffer struct, indexed by the extension number.
// The argument pb should be a nil pointer to the struct type.
func RegisteredExtensions(pb Message) map[int32]*ExtensionDesc {
return extensionMaps[reflect.TypeOf(pb).Elem()]
}

View File

@ -0,0 +1,94 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2014 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto_test
import (
"testing"
pb "./testdata"
"code.google.com/p/goprotobuf/proto"
)
func TestGetExtensionsWithMissingExtensions(t *testing.T) {
msg := &pb.MyMessage{}
ext1 := &pb.Ext{}
if err := proto.SetExtension(msg, pb.E_Ext_More, ext1); err != nil {
t.Fatalf("Could not set ext1: %s", ext1)
}
exts, err := proto.GetExtensions(msg, []*proto.ExtensionDesc{
pb.E_Ext_More,
pb.E_Ext_Text,
})
if err != nil {
t.Fatalf("GetExtensions() failed: %s", err)
}
if exts[0] != ext1 {
t.Errorf("ext1 not in returned extensions: %T %v", exts[0], exts[0])
}
if exts[1] != nil {
t.Errorf("ext2 in returned extensions: %T %v", exts[1], exts[1])
}
}
func TestGetExtensionStability(t *testing.T) {
check := func(m *pb.MyMessage) bool {
ext1, err := proto.GetExtension(m, pb.E_Ext_More)
if err != nil {
t.Fatalf("GetExtension() failed: %s", err)
}
ext2, err := proto.GetExtension(m, pb.E_Ext_More)
if err != nil {
t.Fatalf("GetExtension() failed: %s", err)
}
return ext1 == ext2
}
msg := &pb.MyMessage{Count: proto.Int32(4)}
ext0 := &pb.Ext{}
if err := proto.SetExtension(msg, pb.E_Ext_More, ext0); err != nil {
t.Fatalf("Could not set ext1: %s", ext0)
}
if !check(msg) {
t.Errorf("GetExtension() not stable before marshaling")
}
bb, err := proto.Marshal(msg)
if err != nil {
t.Fatalf("Marshal() failed: %s", err)
}
msg1 := &pb.MyMessage{}
err = proto.Unmarshal(bb, msg1)
if err != nil {
t.Fatalf("Unmarshal() failed: %s", err)
}
if !check(msg1) {
t.Errorf("GetExtension() not stable after unmarshaling")
}
}

View File

@ -0,0 +1,740 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/*
Package proto converts data structures to and from the wire format of
protocol buffers. It works in concert with the Go source code generated
for .proto files by the protocol compiler.
A summary of the properties of the protocol buffer interface
for a protocol buffer variable v:
- Names are turned from camel_case to CamelCase for export.
- There are no methods on v to set fields; just treat
them as structure fields.
- There are getters that return a field's value if set,
and return the field's default value if unset.
The getters work even if the receiver is a nil message.
- The zero value for a struct is its correct initialization state.
All desired fields must be set before marshaling.
- A Reset() method will restore a protobuf struct to its zero state.
- Non-repeated fields are pointers to the values; nil means unset.
That is, optional or required field int32 f becomes F *int32.
- Repeated fields are slices.
- Helper functions are available to aid the setting of fields.
Helpers for getting values are superseded by the
GetFoo methods and their use is deprecated.
msg.Foo = proto.String("hello") // set field
- Constants are defined to hold the default values of all fields that
have them. They have the form Default_StructName_FieldName.
Because the getter methods handle defaulted values,
direct use of these constants should be rare.
- Enums are given type names and maps from names to values.
Enum values are prefixed with the enum's type name. Enum types have
a String method, and a Enum method to assist in message construction.
- Nested groups and enums have type names prefixed with the name of
the surrounding message type.
- Extensions are given descriptor names that start with E_,
followed by an underscore-delimited list of the nested messages
that contain it (if any) followed by the CamelCased name of the
extension field itself. HasExtension, ClearExtension, GetExtension
and SetExtension are functions for manipulating extensions.
- Marshal and Unmarshal are functions to encode and decode the wire format.
The simplest way to describe this is to see an example.
Given file test.proto, containing
package example;
enum FOO { X = 17; };
message Test {
required string label = 1;
optional int32 type = 2 [default=77];
repeated int64 reps = 3;
optional group OptionalGroup = 4 {
required string RequiredField = 5;
}
}
The resulting file, test.pb.go, is:
package example
import "code.google.com/p/goprotobuf/proto"
type FOO int32
const (
FOO_X FOO = 17
)
var FOO_name = map[int32]string{
17: "X",
}
var FOO_value = map[string]int32{
"X": 17,
}
func (x FOO) Enum() *FOO {
p := new(FOO)
*p = x
return p
}
func (x FOO) String() string {
return proto.EnumName(FOO_name, int32(x))
}
type Test struct {
Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (this *Test) Reset() { *this = Test{} }
func (this *Test) String() string { return proto.CompactTextString(this) }
const Default_Test_Type int32 = 77
func (this *Test) GetLabel() string {
if this != nil && this.Label != nil {
return *this.Label
}
return ""
}
func (this *Test) GetType() int32 {
if this != nil && this.Type != nil {
return *this.Type
}
return Default_Test_Type
}
func (this *Test) GetOptionalgroup() *Test_OptionalGroup {
if this != nil {
return this.Optionalgroup
}
return nil
}
type Test_OptionalGroup struct {
RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
XXX_unrecognized []byte `json:"-"`
}
func (this *Test_OptionalGroup) Reset() { *this = Test_OptionalGroup{} }
func (this *Test_OptionalGroup) String() string { return proto.CompactTextString(this) }
func (this *Test_OptionalGroup) GetRequiredField() string {
if this != nil && this.RequiredField != nil {
return *this.RequiredField
}
return ""
}
func init() {
proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
}
To create and play with a Test object:
package main
import (
"log"
"code.google.com/p/goprotobuf/proto"
"./example.pb"
)
func main() {
test := &example.Test{
Label: proto.String("hello"),
Type: proto.Int32(17),
Optionalgroup: &example.Test_OptionalGroup{
RequiredField: proto.String("good bye"),
},
}
data, err := proto.Marshal(test)
if err != nil {
log.Fatal("marshaling error: ", err)
}
newTest := new(example.Test)
err = proto.Unmarshal(data, newTest)
if err != nil {
log.Fatal("unmarshaling error: ", err)
}
// Now test and newTest contain the same data.
if test.GetLabel() != newTest.GetLabel() {
log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
}
// etc.
}
*/
package proto
import (
"encoding/json"
"fmt"
"log"
"reflect"
"strconv"
"sync"
)
// Message is implemented by generated protocol buffer messages.
type Message interface {
Reset()
String() string
ProtoMessage()
}
// Stats records allocation details about the protocol buffer encoders
// and decoders. Useful for tuning the library itself.
type Stats struct {
Emalloc uint64 // mallocs in encode
Dmalloc uint64 // mallocs in decode
Encode uint64 // number of encodes
Decode uint64 // number of decodes
Chit uint64 // number of cache hits
Cmiss uint64 // number of cache misses
Size uint64 // number of sizes
}
// Set to true to enable stats collection.
const collectStats = false
var stats Stats
// GetStats returns a copy of the global Stats structure.
func GetStats() Stats { return stats }
// A Buffer is a buffer manager for marshaling and unmarshaling
// protocol buffers. It may be reused between invocations to
// reduce memory usage. It is not necessary to use a Buffer;
// the global functions Marshal and Unmarshal create a
// temporary Buffer and are fine for most applications.
type Buffer struct {
buf []byte // encode/decode byte stream
index int // write point
// pools of basic types to amortize allocation.
bools []bool
uint32s []uint32
uint64s []uint64
// extra pools, only used with pointer_reflect.go
int32s []int32
int64s []int64
float32s []float32
float64s []float64
}
// NewBuffer allocates a new Buffer and initializes its internal data to
// the contents of the argument slice.
func NewBuffer(e []byte) *Buffer {
return &Buffer{buf: e}
}
// Reset resets the Buffer, ready for marshaling a new protocol buffer.
func (p *Buffer) Reset() {
p.buf = p.buf[0:0] // for reading/writing
p.index = 0 // for reading
}
// SetBuf replaces the internal buffer with the slice,
// ready for unmarshaling the contents of the slice.
func (p *Buffer) SetBuf(s []byte) {
p.buf = s
p.index = 0
}
// Bytes returns the contents of the Buffer.
func (p *Buffer) Bytes() []byte { return p.buf }
/*
* Helper routines for simplifying the creation of optional fields of basic type.
*/
// Bool is a helper routine that allocates a new bool value
// to store v and returns a pointer to it.
func Bool(v bool) *bool {
return &v
}
// Int32 is a helper routine that allocates a new int32 value
// to store v and returns a pointer to it.
func Int32(v int32) *int32 {
return &v
}
// Int is a helper routine that allocates a new int32 value
// to store v and returns a pointer to it, but unlike Int32
// its argument value is an int.
func Int(v int) *int32 {
p := new(int32)
*p = int32(v)
return p
}
// Int64 is a helper routine that allocates a new int64 value
// to store v and returns a pointer to it.
func Int64(v int64) *int64 {
return &v
}
// Float32 is a helper routine that allocates a new float32 value
// to store v and returns a pointer to it.
func Float32(v float32) *float32 {
return &v
}
// Float64 is a helper routine that allocates a new float64 value
// to store v and returns a pointer to it.
func Float64(v float64) *float64 {
return &v
}
// Uint32 is a helper routine that allocates a new uint32 value
// to store v and returns a pointer to it.
func Uint32(v uint32) *uint32 {
p := new(uint32)
*p = v
return p
}
// Uint64 is a helper routine that allocates a new uint64 value
// to store v and returns a pointer to it.
func Uint64(v uint64) *uint64 {
return &v
}
// String is a helper routine that allocates a new string value
// to store v and returns a pointer to it.
func String(v string) *string {
return &v
}
// EnumName is a helper function to simplify printing protocol buffer enums
// by name. Given an enum map and a value, it returns a useful string.
func EnumName(m map[int32]string, v int32) string {
s, ok := m[v]
if ok {
return s
}
return strconv.Itoa(int(v))
}
// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
// from their JSON-encoded representation. Given a map from the enum's symbolic
// names to its int values, and a byte buffer containing the JSON-encoded
// value, it returns an int32 that can be cast to the enum type by the caller.
//
// The function can deal with both JSON representations, numeric and symbolic.
func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
if data[0] == '"' {
// New style: enums are strings.
var repr string
if err := json.Unmarshal(data, &repr); err != nil {
return -1, err
}
val, ok := m[repr]
if !ok {
return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
}
return val, nil
}
// Old style: enums are ints.
var val int32
if err := json.Unmarshal(data, &val); err != nil {
return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
}
return val, nil
}
// DebugPrint dumps the encoded data in b in a debugging format with a header
// including the string s. Used in testing but made available for general debugging.
func (o *Buffer) DebugPrint(s string, b []byte) {
var u uint64
obuf := o.buf
index := o.index
o.buf = b
o.index = 0
depth := 0
fmt.Printf("\n--- %s ---\n", s)
out:
for {
for i := 0; i < depth; i++ {
fmt.Print(" ")
}
index := o.index
if index == len(o.buf) {
break
}
op, err := o.DecodeVarint()
if err != nil {
fmt.Printf("%3d: fetching op err %v\n", index, err)
break out
}
tag := op >> 3
wire := op & 7
switch wire {
default:
fmt.Printf("%3d: t=%3d unknown wire=%d\n",
index, tag, wire)
break out
case WireBytes:
var r []byte
r, err = o.DecodeRawBytes(false)
if err != nil {
break out
}
fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
if len(r) <= 6 {
for i := 0; i < len(r); i++ {
fmt.Printf(" %.2x", r[i])
}
} else {
for i := 0; i < 3; i++ {
fmt.Printf(" %.2x", r[i])
}
fmt.Printf(" ..")
for i := len(r) - 3; i < len(r); i++ {
fmt.Printf(" %.2x", r[i])
}
}
fmt.Printf("\n")
case WireFixed32:
u, err = o.DecodeFixed32()
if err != nil {
fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
case WireFixed64:
u, err = o.DecodeFixed64()
if err != nil {
fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
break
case WireVarint:
u, err = o.DecodeVarint()
if err != nil {
fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
case WireStartGroup:
if err != nil {
fmt.Printf("%3d: t=%3d start err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d start\n", index, tag)
depth++
case WireEndGroup:
depth--
if err != nil {
fmt.Printf("%3d: t=%3d end err %v\n", index, tag, err)
break out
}
fmt.Printf("%3d: t=%3d end\n", index, tag)
}
}
if depth != 0 {
fmt.Printf("%3d: start-end not balanced %d\n", o.index, depth)
}
fmt.Printf("\n")
o.buf = obuf
o.index = index
}
// SetDefaults sets unset protocol buffer fields to their default values.
// It only modifies fields that are both unset and have defined defaults.
// It recursively sets default values in any non-nil sub-messages.
func SetDefaults(pb Message) {
setDefaults(reflect.ValueOf(pb), true, false)
}
// v is a pointer to a struct.
func setDefaults(v reflect.Value, recur, zeros bool) {
v = v.Elem()
defaultMu.RLock()
dm, ok := defaults[v.Type()]
defaultMu.RUnlock()
if !ok {
dm = buildDefaultMessage(v.Type())
defaultMu.Lock()
defaults[v.Type()] = dm
defaultMu.Unlock()
}
for _, sf := range dm.scalars {
f := v.Field(sf.index)
if !f.IsNil() {
// field already set
continue
}
dv := sf.value
if dv == nil && !zeros {
// no explicit default, and don't want to set zeros
continue
}
fptr := f.Addr().Interface() // **T
// TODO: Consider batching the allocations we do here.
switch sf.kind {
case reflect.Bool:
b := new(bool)
if dv != nil {
*b = dv.(bool)
}
*(fptr.(**bool)) = b
case reflect.Float32:
f := new(float32)
if dv != nil {
*f = dv.(float32)
}
*(fptr.(**float32)) = f
case reflect.Float64:
f := new(float64)
if dv != nil {
*f = dv.(float64)
}
*(fptr.(**float64)) = f
case reflect.Int32:
// might be an enum
if ft := f.Type(); ft != int32PtrType {
// enum
f.Set(reflect.New(ft.Elem()))
if dv != nil {
f.Elem().SetInt(int64(dv.(int32)))
}
} else {
// int32 field
i := new(int32)
if dv != nil {
*i = dv.(int32)
}
*(fptr.(**int32)) = i
}
case reflect.Int64:
i := new(int64)
if dv != nil {
*i = dv.(int64)
}
*(fptr.(**int64)) = i
case reflect.String:
s := new(string)
if dv != nil {
*s = dv.(string)
}
*(fptr.(**string)) = s
case reflect.Uint8:
// exceptional case: []byte
var b []byte
if dv != nil {
db := dv.([]byte)
b = make([]byte, len(db))
copy(b, db)
} else {
b = []byte{}
}
*(fptr.(*[]byte)) = b
case reflect.Uint32:
u := new(uint32)
if dv != nil {
*u = dv.(uint32)
}
*(fptr.(**uint32)) = u
case reflect.Uint64:
u := new(uint64)
if dv != nil {
*u = dv.(uint64)
}
*(fptr.(**uint64)) = u
default:
log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
}
}
for _, ni := range dm.nested {
f := v.Field(ni)
if f.IsNil() {
continue
}
// f is *T or []*T
if f.Kind() == reflect.Ptr {
setDefaults(f, recur, zeros)
} else {
for i := 0; i < f.Len(); i++ {
e := f.Index(i)
if e.IsNil() {
continue
}
setDefaults(e, recur, zeros)
}
}
}
}
var (
// defaults maps a protocol buffer struct type to a slice of the fields,
// with its scalar fields set to their proto-declared non-zero default values.
defaultMu sync.RWMutex
defaults = make(map[reflect.Type]defaultMessage)
int32PtrType = reflect.TypeOf((*int32)(nil))
)
// defaultMessage represents information about the default values of a message.
type defaultMessage struct {
scalars []scalarField
nested []int // struct field index of nested messages
}
type scalarField struct {
index int // struct field index
kind reflect.Kind // element type (the T in *T or []T)
value interface{} // the proto-declared default value, or nil
}
func ptrToStruct(t reflect.Type) bool {
return t.Kind() == reflect.Ptr && t.Elem().Kind() == reflect.Struct
}
// t is a struct type.
func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
sprop := GetProperties(t)
for _, prop := range sprop.Prop {
fi, ok := sprop.decoderTags.get(prop.Tag)
if !ok {
// XXX_unrecognized
continue
}
ft := t.Field(fi).Type
// nested messages
if ptrToStruct(ft) || (ft.Kind() == reflect.Slice && ptrToStruct(ft.Elem())) {
dm.nested = append(dm.nested, fi)
continue
}
sf := scalarField{
index: fi,
kind: ft.Elem().Kind(),
}
// scalar fields without defaults
if !prop.HasDefault {
dm.scalars = append(dm.scalars, sf)
continue
}
// a scalar field: either *T or []byte
switch ft.Elem().Kind() {
case reflect.Bool:
x, err := strconv.ParseBool(prop.Default)
if err != nil {
log.Printf("proto: bad default bool %q: %v", prop.Default, err)
continue
}
sf.value = x
case reflect.Float32:
x, err := strconv.ParseFloat(prop.Default, 32)
if err != nil {
log.Printf("proto: bad default float32 %q: %v", prop.Default, err)
continue
}
sf.value = float32(x)
case reflect.Float64:
x, err := strconv.ParseFloat(prop.Default, 64)
if err != nil {
log.Printf("proto: bad default float64 %q: %v", prop.Default, err)
continue
}
sf.value = x
case reflect.Int32:
x, err := strconv.ParseInt(prop.Default, 10, 32)
if err != nil {
log.Printf("proto: bad default int32 %q: %v", prop.Default, err)
continue
}
sf.value = int32(x)
case reflect.Int64:
x, err := strconv.ParseInt(prop.Default, 10, 64)
if err != nil {
log.Printf("proto: bad default int64 %q: %v", prop.Default, err)
continue
}
sf.value = x
case reflect.String:
sf.value = prop.Default
case reflect.Uint8:
// []byte (not *uint8)
sf.value = []byte(prop.Default)
case reflect.Uint32:
x, err := strconv.ParseUint(prop.Default, 10, 32)
if err != nil {
log.Printf("proto: bad default uint32 %q: %v", prop.Default, err)
continue
}
sf.value = uint32(x)
case reflect.Uint64:
x, err := strconv.ParseUint(prop.Default, 10, 64)
if err != nil {
log.Printf("proto: bad default uint64 %q: %v", prop.Default, err)
continue
}
sf.value = x
default:
log.Printf("proto: unhandled def kind %v", ft.Elem().Kind())
continue
}
dm.scalars = append(dm.scalars, sf)
}
return dm
}

View File

@ -0,0 +1,287 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
/*
* Support for message sets.
*/
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"reflect"
"sort"
)
// ErrNoMessageTypeId occurs when a protocol buffer does not have a message type ID.
// A message type ID is required for storing a protocol buffer in a message set.
var ErrNoMessageTypeId = errors.New("proto does not have a message type ID")
// The first two types (_MessageSet_Item and MessageSet)
// model what the protocol compiler produces for the following protocol message:
// message MessageSet {
// repeated group Item = 1 {
// required int32 type_id = 2;
// required string message = 3;
// };
// }
// That is the MessageSet wire format. We can't use a proto to generate these
// because that would introduce a circular dependency between it and this package.
//
// When a proto1 proto has a field that looks like:
// optional message<MessageSet> info = 3;
// the protocol compiler produces a field in the generated struct that looks like:
// Info *_proto_.MessageSet `protobuf:"bytes,3,opt,name=info"`
// The package is automatically inserted so there is no need for that proto file to
// import this package.
type _MessageSet_Item struct {
TypeId *int32 `protobuf:"varint,2,req,name=type_id"`
Message []byte `protobuf:"bytes,3,req,name=message"`
}
type MessageSet struct {
Item []*_MessageSet_Item `protobuf:"group,1,rep"`
XXX_unrecognized []byte
// TODO: caching?
}
// Make sure MessageSet is a Message.
var _ Message = (*MessageSet)(nil)
// messageTypeIder is an interface satisfied by a protocol buffer type
// that may be stored in a MessageSet.
type messageTypeIder interface {
MessageTypeId() int32
}
func (ms *MessageSet) find(pb Message) *_MessageSet_Item {
mti, ok := pb.(messageTypeIder)
if !ok {
return nil
}
id := mti.MessageTypeId()
for _, item := range ms.Item {
if *item.TypeId == id {
return item
}
}
return nil
}
func (ms *MessageSet) Has(pb Message) bool {
if ms.find(pb) != nil {
return true
}
return false
}
func (ms *MessageSet) Unmarshal(pb Message) error {
if item := ms.find(pb); item != nil {
return Unmarshal(item.Message, pb)
}
if _, ok := pb.(messageTypeIder); !ok {
return ErrNoMessageTypeId
}
return nil // TODO: return error instead?
}
func (ms *MessageSet) Marshal(pb Message) error {
msg, err := Marshal(pb)
if err != nil {
return err
}
if item := ms.find(pb); item != nil {
// reuse existing item
item.Message = msg
return nil
}
mti, ok := pb.(messageTypeIder)
if !ok {
return ErrNoMessageTypeId
}
mtid := mti.MessageTypeId()
ms.Item = append(ms.Item, &_MessageSet_Item{
TypeId: &mtid,
Message: msg,
})
return nil
}
func (ms *MessageSet) Reset() { *ms = MessageSet{} }
func (ms *MessageSet) String() string { return CompactTextString(ms) }
func (*MessageSet) ProtoMessage() {}
// Support for the message_set_wire_format message option.
func skipVarint(buf []byte) []byte {
i := 0
for ; buf[i]&0x80 != 0; i++ {
}
return buf[i+1:]
}
// MarshalMessageSet encodes the extension map represented by m in the message set wire format.
// It is called by generated Marshal methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSet(m map[int32]Extension) ([]byte, error) {
if err := encodeExtensionMap(m); err != nil {
return nil, err
}
// Sort extension IDs to provide a deterministic encoding.
// See also enc_map in encode.go.
ids := make([]int, 0, len(m))
for id := range m {
ids = append(ids, int(id))
}
sort.Ints(ids)
ms := &MessageSet{Item: make([]*_MessageSet_Item, 0, len(m))}
for _, id := range ids {
e := m[int32(id)]
// Remove the wire type and field number varint, as well as the length varint.
msg := skipVarint(skipVarint(e.enc))
ms.Item = append(ms.Item, &_MessageSet_Item{
TypeId: Int32(int32(id)),
Message: msg,
})
}
return Marshal(ms)
}
// UnmarshalMessageSet decodes the extension map encoded in buf in the message set wire format.
// It is called by generated Unmarshal methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSet(buf []byte, m map[int32]Extension) error {
ms := new(MessageSet)
if err := Unmarshal(buf, ms); err != nil {
return err
}
for _, item := range ms.Item {
id := *item.TypeId
msg := item.Message
// Restore wire type and field number varint, plus length varint.
// Be careful to preserve duplicate items.
b := EncodeVarint(uint64(id)<<3 | WireBytes)
if ext, ok := m[id]; ok {
// Existing data; rip off the tag and length varint
// so we join the new data correctly.
// We can assume that ext.enc is set because we are unmarshaling.
o := ext.enc[len(b):] // skip wire type and field number
_, n := DecodeVarint(o) // calculate length of length varint
o = o[n:] // skip length varint
msg = append(o, msg...) // join old data and new data
}
b = append(b, EncodeVarint(uint64(len(msg)))...)
b = append(b, msg...)
m[id] = Extension{enc: b}
}
return nil
}
// MarshalMessageSetJSON encodes the extension map represented by m in JSON format.
// It is called by generated MarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func MarshalMessageSetJSON(m map[int32]Extension) ([]byte, error) {
var b bytes.Buffer
b.WriteByte('{')
// Process the map in key order for deterministic output.
ids := make([]int32, 0, len(m))
for id := range m {
ids = append(ids, id)
}
sort.Sort(int32Slice(ids)) // int32Slice defined in text.go
for i, id := range ids {
ext := m[id]
if i > 0 {
b.WriteByte(',')
}
msd, ok := messageSetMap[id]
if !ok {
// Unknown type; we can't render it, so skip it.
continue
}
fmt.Fprintf(&b, `"[%s]":`, msd.name)
x := ext.value
if x == nil {
x = reflect.New(msd.t.Elem()).Interface()
if err := Unmarshal(ext.enc, x.(Message)); err != nil {
return nil, err
}
}
d, err := json.Marshal(x)
if err != nil {
return nil, err
}
b.Write(d)
}
b.WriteByte('}')
return b.Bytes(), nil
}
// UnmarshalMessageSetJSON decodes the extension map encoded in buf in JSON format.
// It is called by generated UnmarshalJSON methods on protocol buffer messages with the message_set_wire_format option.
func UnmarshalMessageSetJSON(buf []byte, m map[int32]Extension) error {
// Common-case fast path.
if len(buf) == 0 || bytes.Equal(buf, []byte("{}")) {
return nil
}
// This is fairly tricky, and it's not clear that it is needed.
return errors.New("TODO: UnmarshalMessageSetJSON not yet implemented")
}
// A global registry of types that can be used in a MessageSet.
var messageSetMap = make(map[int32]messageSetDesc)
type messageSetDesc struct {
t reflect.Type // pointer to struct
name string
}
// RegisterMessageSetType is called from the generated code.
func RegisterMessageSetType(m Message, fieldNum int32, name string) {
messageSetMap[fieldNum] = messageSetDesc{
t: reflect.TypeOf(m),
name: name,
}
}

View File

@ -0,0 +1,66 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2014 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"bytes"
"testing"
)
func TestUnmarshalMessageSetWithDuplicate(t *testing.T) {
// Check that a repeated message set entry will be concatenated.
in := &MessageSet{
Item: []*_MessageSet_Item{
{TypeId: Int32(12345), Message: []byte("hoo")},
{TypeId: Int32(12345), Message: []byte("hah")},
},
}
b, err := Marshal(in)
if err != nil {
t.Fatalf("Marshal: %v", err)
}
t.Logf("Marshaled bytes: %q", b)
m := make(map[int32]Extension)
if err := UnmarshalMessageSet(b, m); err != nil {
t.Fatalf("UnmarshalMessageSet: %v", err)
}
ext, ok := m[12345]
if !ok {
t.Fatalf("Didn't retrieve extension 12345; map is %v", m)
}
// Skip wire type/field number and length varints.
got := skipVarint(skipVarint(ext.enc))
if want := []byte("hoohah"); !bytes.Equal(got, want) {
t.Errorf("Combined extension is %q, want %q", got, want)
}
}

View File

@ -0,0 +1,384 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2012 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build appengine,!appenginevm
// This file contains an implementation of proto field accesses using package reflect.
// It is slower than the code in pointer_unsafe.go but it avoids package unsafe and can
// be used on App Engine.
package proto
import (
"math"
"reflect"
)
// A structPointer is a pointer to a struct.
type structPointer struct {
v reflect.Value
}
// toStructPointer returns a structPointer equivalent to the given reflect value.
// The reflect value must itself be a pointer to a struct.
func toStructPointer(v reflect.Value) structPointer {
return structPointer{v}
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p.v.IsNil()
}
// Interface returns the struct pointer as an interface value.
func structPointer_Interface(p structPointer, _ reflect.Type) interface{} {
return p.v.Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// In this implementation, a field is identified by the sequence of field indices
// passed to reflect's FieldByIndex.
type field []int
// toField returns a field equivalent to the given reflect field.
func toField(f *reflect.StructField) field {
return f.Index
}
// invalidField is an invalid field identifier.
var invalidField = field(nil)
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool { return f != nil }
// field returns the given field in the struct as a reflect value.
func structPointer_field(p structPointer, f field) reflect.Value {
// Special case: an extension map entry with a value of type T
// passes a *T to the struct-handling code with a zero field,
// expecting that it will be treated as equivalent to *struct{ X T },
// which has the same memory layout. We have to handle that case
// specially, because reflect will panic if we call FieldByIndex on a
// non-struct.
if f == nil {
return p.v.Elem()
}
return p.v.Elem().FieldByIndex(f)
}
// ifield returns the given field in the struct as an interface value.
func structPointer_ifield(p structPointer, f field) interface{} {
return structPointer_field(p, f).Addr().Interface()
}
// Bytes returns the address of a []byte field in the struct.
func structPointer_Bytes(p structPointer, f field) *[]byte {
return structPointer_ifield(p, f).(*[]byte)
}
// BytesSlice returns the address of a [][]byte field in the struct.
func structPointer_BytesSlice(p structPointer, f field) *[][]byte {
return structPointer_ifield(p, f).(*[][]byte)
}
// Bool returns the address of a *bool field in the struct.
func structPointer_Bool(p structPointer, f field) **bool {
return structPointer_ifield(p, f).(**bool)
}
// BoolSlice returns the address of a []bool field in the struct.
func structPointer_BoolSlice(p structPointer, f field) *[]bool {
return structPointer_ifield(p, f).(*[]bool)
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return structPointer_ifield(p, f).(**string)
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return structPointer_ifield(p, f).(*[]string)
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return structPointer_ifield(p, f).(*map[int32]Extension)
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
structPointer_field(p, f).Set(q.v)
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return structPointer{structPointer_field(p, f)}
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) structPointerSlice {
return structPointerSlice{structPointer_field(p, f)}
}
// A structPointerSlice represents the address of a slice of pointers to structs
// (themselves messages or groups). That is, v.Type() is *[]*struct{...}.
type structPointerSlice struct {
v reflect.Value
}
func (p structPointerSlice) Len() int { return p.v.Len() }
func (p structPointerSlice) Index(i int) structPointer { return structPointer{p.v.Index(i)} }
func (p structPointerSlice) Append(q structPointer) {
p.v.Set(reflect.Append(p.v, q.v))
}
var (
int32Type = reflect.TypeOf(int32(0))
uint32Type = reflect.TypeOf(uint32(0))
float32Type = reflect.TypeOf(float32(0))
int64Type = reflect.TypeOf(int64(0))
uint64Type = reflect.TypeOf(uint64(0))
float64Type = reflect.TypeOf(float64(0))
)
// A word32 represents a field of type *int32, *uint32, *float32, or *enum.
// That is, v.Type() is *int32, *uint32, *float32, or *enum and v is assignable.
type word32 struct {
v reflect.Value
}
// IsNil reports whether p is nil.
func word32_IsNil(p word32) bool {
return p.v.IsNil()
}
// Set sets p to point at a newly allocated word with bits set to x.
func word32_Set(p word32, o *Buffer, x uint32) {
t := p.v.Type().Elem()
switch t {
case int32Type:
if len(o.int32s) == 0 {
o.int32s = make([]int32, uint32PoolSize)
}
o.int32s[0] = int32(x)
p.v.Set(reflect.ValueOf(&o.int32s[0]))
o.int32s = o.int32s[1:]
return
case uint32Type:
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
}
o.uint32s[0] = x
p.v.Set(reflect.ValueOf(&o.uint32s[0]))
o.uint32s = o.uint32s[1:]
return
case float32Type:
if len(o.float32s) == 0 {
o.float32s = make([]float32, uint32PoolSize)
}
o.float32s[0] = math.Float32frombits(x)
p.v.Set(reflect.ValueOf(&o.float32s[0]))
o.float32s = o.float32s[1:]
return
}
// must be enum
p.v.Set(reflect.New(t))
p.v.Elem().SetInt(int64(int32(x)))
}
// Get gets the bits pointed at by p, as a uint32.
func word32_Get(p word32) uint32 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32 returns a reference to a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32{structPointer_field(p, f)}
}
// A word32Slice is a slice of 32-bit values.
// That is, v.Type() is []int32, []uint32, []float32, or []enum.
type word32Slice struct {
v reflect.Value
}
func (p word32Slice) Append(x uint32) {
n, m := p.v.Len(), p.v.Cap()
if n < m {
p.v.SetLen(n + 1)
} else {
t := p.v.Type().Elem()
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
}
elem := p.v.Index(n)
switch elem.Kind() {
case reflect.Int32:
elem.SetInt(int64(int32(x)))
case reflect.Uint32:
elem.SetUint(uint64(x))
case reflect.Float32:
elem.SetFloat(float64(math.Float32frombits(x)))
}
}
func (p word32Slice) Len() int {
return p.v.Len()
}
func (p word32Slice) Index(i int) uint32 {
elem := p.v.Index(i)
switch elem.Kind() {
case reflect.Int32:
return uint32(elem.Int())
case reflect.Uint32:
return uint32(elem.Uint())
case reflect.Float32:
return math.Float32bits(float32(elem.Float()))
}
panic("unreachable")
}
// Word32Slice returns a reference to a []int32, []uint32, []float32, or []enum field in the struct.
func structPointer_Word32Slice(p structPointer, f field) word32Slice {
return word32Slice{structPointer_field(p, f)}
}
// word64 is like word32 but for 64-bit values.
type word64 struct {
v reflect.Value
}
func word64_Set(p word64, o *Buffer, x uint64) {
t := p.v.Type().Elem()
switch t {
case int64Type:
if len(o.int64s) == 0 {
o.int64s = make([]int64, uint64PoolSize)
}
o.int64s[0] = int64(x)
p.v.Set(reflect.ValueOf(&o.int64s[0]))
o.int64s = o.int64s[1:]
return
case uint64Type:
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
}
o.uint64s[0] = x
p.v.Set(reflect.ValueOf(&o.uint64s[0]))
o.uint64s = o.uint64s[1:]
return
case float64Type:
if len(o.float64s) == 0 {
o.float64s = make([]float64, uint64PoolSize)
}
o.float64s[0] = math.Float64frombits(x)
p.v.Set(reflect.ValueOf(&o.float64s[0]))
o.float64s = o.float64s[1:]
return
}
panic("unreachable")
}
func word64_IsNil(p word64) bool {
return p.v.IsNil()
}
func word64_Get(p word64) uint64 {
elem := p.v.Elem()
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return elem.Uint()
case reflect.Float64:
return math.Float64bits(elem.Float())
}
panic("unreachable")
}
func structPointer_Word64(p structPointer, f field) word64 {
return word64{structPointer_field(p, f)}
}
type word64Slice struct {
v reflect.Value
}
func (p word64Slice) Append(x uint64) {
n, m := p.v.Len(), p.v.Cap()
if n < m {
p.v.SetLen(n + 1)
} else {
t := p.v.Type().Elem()
p.v.Set(reflect.Append(p.v, reflect.Zero(t)))
}
elem := p.v.Index(n)
switch elem.Kind() {
case reflect.Int64:
elem.SetInt(int64(int64(x)))
case reflect.Uint64:
elem.SetUint(uint64(x))
case reflect.Float64:
elem.SetFloat(float64(math.Float64frombits(x)))
}
}
func (p word64Slice) Len() int {
return p.v.Len()
}
func (p word64Slice) Index(i int) uint64 {
elem := p.v.Index(i)
switch elem.Kind() {
case reflect.Int64:
return uint64(elem.Int())
case reflect.Uint64:
return uint64(elem.Uint())
case reflect.Float64:
return math.Float64bits(float64(elem.Float()))
}
panic("unreachable")
}
func structPointer_Word64Slice(p structPointer, f field) word64Slice {
return word64Slice{structPointer_field(p, f)}
}

View File

@ -0,0 +1,218 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2012 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// +build !appengine appenginevm
// This file contains the implementation of the proto field accesses using package unsafe.
package proto
import (
"reflect"
"unsafe"
)
// NOTE: These type_Foo functions would more idiomatically be methods,
// but Go does not allow methods on pointer types, and we must preserve
// some pointer type for the garbage collector. We use these
// funcs with clunky names as our poor approximation to methods.
//
// An alternative would be
// type structPointer struct { p unsafe.Pointer }
// but that does not registerize as well.
// A structPointer is a pointer to a struct.
type structPointer unsafe.Pointer
// toStructPointer returns a structPointer equivalent to the given reflect value.
func toStructPointer(v reflect.Value) structPointer {
return structPointer(unsafe.Pointer(v.Pointer()))
}
// IsNil reports whether p is nil.
func structPointer_IsNil(p structPointer) bool {
return p == nil
}
// Interface returns the struct pointer, assumed to have element type t,
// as an interface value.
func structPointer_Interface(p structPointer, t reflect.Type) interface{} {
return reflect.NewAt(t, unsafe.Pointer(p)).Interface()
}
// A field identifies a field in a struct, accessible from a structPointer.
// In this implementation, a field is identified by its byte offset from the start of the struct.
type field uintptr
// toField returns a field equivalent to the given reflect field.
func toField(f *reflect.StructField) field {
return field(f.Offset)
}
// invalidField is an invalid field identifier.
const invalidField = ^field(0)
// IsValid reports whether the field identifier is valid.
func (f field) IsValid() bool {
return f != ^field(0)
}
// Bytes returns the address of a []byte field in the struct.
func structPointer_Bytes(p structPointer, f field) *[]byte {
return (*[]byte)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// BytesSlice returns the address of a [][]byte field in the struct.
func structPointer_BytesSlice(p structPointer, f field) *[][]byte {
return (*[][]byte)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// Bool returns the address of a *bool field in the struct.
func structPointer_Bool(p structPointer, f field) **bool {
return (**bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// BoolSlice returns the address of a []bool field in the struct.
func structPointer_BoolSlice(p structPointer, f field) *[]bool {
return (*[]bool)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// String returns the address of a *string field in the struct.
func structPointer_String(p structPointer, f field) **string {
return (**string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StringSlice returns the address of a []string field in the struct.
func structPointer_StringSlice(p structPointer, f field) *[]string {
return (*[]string)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// ExtMap returns the address of an extension map field in the struct.
func structPointer_ExtMap(p structPointer, f field) *map[int32]Extension {
return (*map[int32]Extension)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// SetStructPointer writes a *struct field in the struct.
func structPointer_SetStructPointer(p structPointer, f field, q structPointer) {
*(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f))) = q
}
// GetStructPointer reads a *struct field in the struct.
func structPointer_GetStructPointer(p structPointer, f field) structPointer {
return *(*structPointer)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// StructPointerSlice the address of a []*struct field in the struct.
func structPointer_StructPointerSlice(p structPointer, f field) *structPointerSlice {
return (*structPointerSlice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// A structPointerSlice represents a slice of pointers to structs (themselves submessages or groups).
type structPointerSlice []structPointer
func (v *structPointerSlice) Len() int { return len(*v) }
func (v *structPointerSlice) Index(i int) structPointer { return (*v)[i] }
func (v *structPointerSlice) Append(p structPointer) { *v = append(*v, p) }
// A word32 is the address of a "pointer to 32-bit value" field.
type word32 **uint32
// IsNil reports whether *v is nil.
func word32_IsNil(p word32) bool {
return *p == nil
}
// Set sets *v to point at a newly allocated word set to x.
func word32_Set(p word32, o *Buffer, x uint32) {
if len(o.uint32s) == 0 {
o.uint32s = make([]uint32, uint32PoolSize)
}
o.uint32s[0] = x
*p = &o.uint32s[0]
o.uint32s = o.uint32s[1:]
}
// Get gets the value pointed at by *v.
func word32_Get(p word32) uint32 {
return **p
}
// Word32 returns the address of a *int32, *uint32, *float32, or *enum field in the struct.
func structPointer_Word32(p structPointer, f field) word32 {
return word32((**uint32)(unsafe.Pointer(uintptr(p) + uintptr(f))))
}
// A word32Slice is a slice of 32-bit values.
type word32Slice []uint32
func (v *word32Slice) Append(x uint32) { *v = append(*v, x) }
func (v *word32Slice) Len() int { return len(*v) }
func (v *word32Slice) Index(i int) uint32 { return (*v)[i] }
// Word32Slice returns the address of a []int32, []uint32, []float32, or []enum field in the struct.
func structPointer_Word32Slice(p structPointer, f field) *word32Slice {
return (*word32Slice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}
// word64 is like word32 but for 64-bit values.
type word64 **uint64
func word64_Set(p word64, o *Buffer, x uint64) {
if len(o.uint64s) == 0 {
o.uint64s = make([]uint64, uint64PoolSize)
}
o.uint64s[0] = x
*p = &o.uint64s[0]
o.uint64s = o.uint64s[1:]
}
func word64_IsNil(p word64) bool {
return *p == nil
}
func word64_Get(p word64) uint64 {
return **p
}
func structPointer_Word64(p structPointer, f field) word64 {
return word64((**uint64)(unsafe.Pointer(uintptr(p) + uintptr(f))))
}
// word64Slice is like word32Slice but for 64-bit values.
type word64Slice []uint64
func (v *word64Slice) Append(x uint64) { *v = append(*v, x) }
func (v *word64Slice) Len() int { return len(*v) }
func (v *word64Slice) Index(i int) uint64 { return (*v)[i] }
func structPointer_Word64Slice(p structPointer, f field) *word64Slice {
return (*word64Slice)(unsafe.Pointer(uintptr(p) + uintptr(f)))
}

View File

@ -0,0 +1,662 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
/*
* Routines for encoding data into the wire format for protocol buffers.
*/
import (
"fmt"
"os"
"reflect"
"sort"
"strconv"
"strings"
"sync"
)
const debug bool = false
// Constants that identify the encoding of a value on the wire.
const (
WireVarint = 0
WireFixed64 = 1
WireBytes = 2
WireStartGroup = 3
WireEndGroup = 4
WireFixed32 = 5
)
const startSize = 10 // initial slice/string sizes
// Encoders are defined in encode.go
// An encoder outputs the full representation of a field, including its
// tag and encoder type.
type encoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueEncoder encodes a single integer in a particular encoding.
type valueEncoder func(o *Buffer, x uint64) error
// Sizers are defined in encode.go
// A sizer returns the encoded size of a field, including its tag and encoder
// type.
type sizer func(prop *Properties, base structPointer) int
// A valueSizer returns the encoded size of a single integer in a particular
// encoding.
type valueSizer func(x uint64) int
// Decoders are defined in decode.go
// A decoder creates a value from its wire representation.
// Unrecognized subelements are saved in unrec.
type decoder func(p *Buffer, prop *Properties, base structPointer) error
// A valueDecoder decodes a single integer in a particular encoding.
type valueDecoder func(o *Buffer) (x uint64, err error)
// tagMap is an optimization over map[int]int for typical protocol buffer
// use-cases. Encoded protocol buffers are often in tag order with small tag
// numbers.
type tagMap struct {
fastTags []int
slowTags map[int]int
}
// tagMapFastLimit is the upper bound on the tag number that will be stored in
// the tagMap slice rather than its map.
const tagMapFastLimit = 1024
func (p *tagMap) get(t int) (int, bool) {
if t > 0 && t < tagMapFastLimit {
if t >= len(p.fastTags) {
return 0, false
}
fi := p.fastTags[t]
return fi, fi >= 0
}
fi, ok := p.slowTags[t]
return fi, ok
}
func (p *tagMap) put(t int, fi int) {
if t > 0 && t < tagMapFastLimit {
for len(p.fastTags) < t+1 {
p.fastTags = append(p.fastTags, -1)
}
p.fastTags[t] = fi
return
}
if p.slowTags == nil {
p.slowTags = make(map[int]int)
}
p.slowTags[t] = fi
}
// StructProperties represents properties for all the fields of a struct.
// decoderTags and decoderOrigNames should only be used by the decoder.
type StructProperties struct {
Prop []*Properties // properties for each field
reqCount int // required count
decoderTags tagMap // map from proto tag to struct field number
decoderOrigNames map[string]int // map from original name to struct field number
order []int // list of struct field numbers in tag order
unrecField field // field id of the XXX_unrecognized []byte field
extendable bool // is this an extendable proto
}
// Implement the sorting interface so we can sort the fields in tag order, as recommended by the spec.
// See encode.go, (*Buffer).enc_struct.
func (sp *StructProperties) Len() int { return len(sp.order) }
func (sp *StructProperties) Less(i, j int) bool {
return sp.Prop[sp.order[i]].Tag < sp.Prop[sp.order[j]].Tag
}
func (sp *StructProperties) Swap(i, j int) { sp.order[i], sp.order[j] = sp.order[j], sp.order[i] }
// Properties represents the protocol-specific behavior of a single struct field.
type Properties struct {
Name string // name of the field, for error messages
OrigName string // original name before protocol compiler (always set)
Wire string
WireType int
Tag int
Required bool
Optional bool
Repeated bool
Packed bool // relevant for repeated primitives only
Enum string // set for enum types only
Default string // default value
HasDefault bool // whether an explicit default was provided
def_uint64 uint64
enc encoder
valEnc valueEncoder // set for bool and numeric types only
field field
tagcode []byte // encoding of EncodeVarint((Tag<<3)|WireType)
tagbuf [8]byte
stype reflect.Type // set for struct types only
sprop *StructProperties // set for struct types only
isMarshaler bool
isUnmarshaler bool
size sizer
valSize valueSizer // set for bool and numeric types only
dec decoder
valDec valueDecoder // set for bool and numeric types only
// If this is a packable field, this will be the decoder for the packed version of the field.
packedDec decoder
}
// String formats the properties in the protobuf struct field tag style.
func (p *Properties) String() string {
s := p.Wire
s = ","
s += strconv.Itoa(p.Tag)
if p.Required {
s += ",req"
}
if p.Optional {
s += ",opt"
}
if p.Repeated {
s += ",rep"
}
if p.Packed {
s += ",packed"
}
if p.OrigName != p.Name {
s += ",name=" + p.OrigName
}
if len(p.Enum) > 0 {
s += ",enum=" + p.Enum
}
if p.HasDefault {
s += ",def=" + p.Default
}
return s
}
// Parse populates p by parsing a string in the protobuf struct field tag style.
func (p *Properties) Parse(s string) {
// "bytes,49,opt,name=foo,def=hello!"
fields := strings.Split(s, ",") // breaks def=, but handled below.
if len(fields) < 2 {
fmt.Fprintf(os.Stderr, "proto: tag has too few fields: %q\n", s)
return
}
p.Wire = fields[0]
switch p.Wire {
case "varint":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeVarint
p.valDec = (*Buffer).DecodeVarint
p.valSize = sizeVarint
case "fixed32":
p.WireType = WireFixed32
p.valEnc = (*Buffer).EncodeFixed32
p.valDec = (*Buffer).DecodeFixed32
p.valSize = sizeFixed32
case "fixed64":
p.WireType = WireFixed64
p.valEnc = (*Buffer).EncodeFixed64
p.valDec = (*Buffer).DecodeFixed64
p.valSize = sizeFixed64
case "zigzag32":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag32
p.valDec = (*Buffer).DecodeZigzag32
p.valSize = sizeZigzag32
case "zigzag64":
p.WireType = WireVarint
p.valEnc = (*Buffer).EncodeZigzag64
p.valDec = (*Buffer).DecodeZigzag64
p.valSize = sizeZigzag64
case "bytes", "group":
p.WireType = WireBytes
// no numeric converter for non-numeric types
default:
fmt.Fprintf(os.Stderr, "proto: tag has unknown wire type: %q\n", s)
return
}
var err error
p.Tag, err = strconv.Atoi(fields[1])
if err != nil {
return
}
for i := 2; i < len(fields); i++ {
f := fields[i]
switch {
case f == "req":
p.Required = true
case f == "opt":
p.Optional = true
case f == "rep":
p.Repeated = true
case f == "packed":
p.Packed = true
case strings.HasPrefix(f, "name="):
p.OrigName = f[5:]
case strings.HasPrefix(f, "enum="):
p.Enum = f[5:]
case strings.HasPrefix(f, "def="):
p.HasDefault = true
p.Default = f[4:] // rest of string
if i+1 < len(fields) {
// Commas aren't escaped, and def is always last.
p.Default += "," + strings.Join(fields[i+1:], ",")
break
}
}
}
}
func logNoSliceEnc(t1, t2 reflect.Type) {
fmt.Fprintf(os.Stderr, "proto: no slice oenc for %T = []%T\n", t1, t2)
}
var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem()
// Initialize the fields for encoding and decoding.
func (p *Properties) setEncAndDec(typ reflect.Type, lockGetProp bool) {
p.enc = nil
p.dec = nil
p.size = nil
switch t1 := typ; t1.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no coders for %v\n", t1)
case reflect.Ptr:
switch t2 := t1.Elem(); t2.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no encoder function for %T -> %T\n", t1, t2)
break
case reflect.Bool:
p.enc = (*Buffer).enc_bool
p.dec = (*Buffer).dec_bool
p.size = size_bool
case reflect.Int32:
p.enc = (*Buffer).enc_int32
p.dec = (*Buffer).dec_int32
p.size = size_int32
case reflect.Uint32:
p.enc = (*Buffer).enc_uint32
p.dec = (*Buffer).dec_int32 // can reuse
p.size = size_uint32
case reflect.Int64, reflect.Uint64:
p.enc = (*Buffer).enc_int64
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.Float32:
p.enc = (*Buffer).enc_uint32 // can just treat them as bits
p.dec = (*Buffer).dec_int32
p.size = size_uint32
case reflect.Float64:
p.enc = (*Buffer).enc_int64 // can just treat them as bits
p.dec = (*Buffer).dec_int64
p.size = size_int64
case reflect.String:
p.enc = (*Buffer).enc_string
p.dec = (*Buffer).dec_string
p.size = size_string
case reflect.Struct:
p.stype = t1.Elem()
p.isMarshaler = isMarshaler(t1)
p.isUnmarshaler = isUnmarshaler(t1)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_struct_message
p.dec = (*Buffer).dec_struct_message
p.size = size_struct_message
} else {
p.enc = (*Buffer).enc_struct_group
p.dec = (*Buffer).dec_struct_group
p.size = size_struct_group
}
}
case reflect.Slice:
switch t2 := t1.Elem(); t2.Kind() {
default:
logNoSliceEnc(t1, t2)
break
case reflect.Bool:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_bool
p.size = size_slice_packed_bool
} else {
p.enc = (*Buffer).enc_slice_bool
p.size = size_slice_bool
}
p.dec = (*Buffer).dec_slice_bool
p.packedDec = (*Buffer).dec_slice_packed_bool
case reflect.Int32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int32
p.size = size_slice_packed_int32
} else {
p.enc = (*Buffer).enc_slice_int32
p.size = size_slice_int32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Uint32:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case reflect.Int64, reflect.Uint64:
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
case reflect.Uint8:
p.enc = (*Buffer).enc_slice_byte
p.dec = (*Buffer).dec_slice_byte
p.size = size_slice_byte
case reflect.Float32, reflect.Float64:
switch t2.Bits() {
case 32:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_uint32
p.size = size_slice_packed_uint32
} else {
p.enc = (*Buffer).enc_slice_uint32
p.size = size_slice_uint32
}
p.dec = (*Buffer).dec_slice_int32
p.packedDec = (*Buffer).dec_slice_packed_int32
case 64:
// can just treat them as bits
if p.Packed {
p.enc = (*Buffer).enc_slice_packed_int64
p.size = size_slice_packed_int64
} else {
p.enc = (*Buffer).enc_slice_int64
p.size = size_slice_int64
}
p.dec = (*Buffer).dec_slice_int64
p.packedDec = (*Buffer).dec_slice_packed_int64
default:
logNoSliceEnc(t1, t2)
break
}
case reflect.String:
p.enc = (*Buffer).enc_slice_string
p.dec = (*Buffer).dec_slice_string
p.size = size_slice_string
case reflect.Ptr:
switch t3 := t2.Elem(); t3.Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no ptr oenc for %T -> %T -> %T\n", t1, t2, t3)
break
case reflect.Struct:
p.stype = t2.Elem()
p.isMarshaler = isMarshaler(t2)
p.isUnmarshaler = isUnmarshaler(t2)
if p.Wire == "bytes" {
p.enc = (*Buffer).enc_slice_struct_message
p.dec = (*Buffer).dec_slice_struct_message
p.size = size_slice_struct_message
} else {
p.enc = (*Buffer).enc_slice_struct_group
p.dec = (*Buffer).dec_slice_struct_group
p.size = size_slice_struct_group
}
}
case reflect.Slice:
switch t2.Elem().Kind() {
default:
fmt.Fprintf(os.Stderr, "proto: no slice elem oenc for %T -> %T -> %T\n", t1, t2, t2.Elem())
break
case reflect.Uint8:
p.enc = (*Buffer).enc_slice_slice_byte
p.dec = (*Buffer).dec_slice_slice_byte
p.size = size_slice_slice_byte
}
}
}
// precalculate tag code
wire := p.WireType
if p.Packed {
wire = WireBytes
}
x := uint32(p.Tag)<<3 | uint32(wire)
i := 0
for i = 0; x > 127; i++ {
p.tagbuf[i] = 0x80 | uint8(x&0x7F)
x >>= 7
}
p.tagbuf[i] = uint8(x)
p.tagcode = p.tagbuf[0 : i+1]
if p.stype != nil {
if lockGetProp {
p.sprop = GetProperties(p.stype)
} else {
p.sprop = getPropertiesLocked(p.stype)
}
}
}
var (
marshalerType = reflect.TypeOf((*Marshaler)(nil)).Elem()
unmarshalerType = reflect.TypeOf((*Unmarshaler)(nil)).Elem()
)
// isMarshaler reports whether type t implements Marshaler.
func isMarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isMarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isMarshaler")
}
return t.Implements(marshalerType)
}
// isUnmarshaler reports whether type t implements Unmarshaler.
func isUnmarshaler(t reflect.Type) bool {
// We're checking for (likely) pointer-receiver methods
// so if t is not a pointer, something is very wrong.
// The calls above only invoke isUnmarshaler on pointer types.
if t.Kind() != reflect.Ptr {
panic("proto: misuse of isUnmarshaler")
}
return t.Implements(unmarshalerType)
}
// Init populates the properties from a protocol buffer struct tag.
func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) {
p.init(typ, name, tag, f, true)
}
func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructField, lockGetProp bool) {
// "bytes,49,opt,def=hello!"
p.Name = name
p.OrigName = name
if f != nil {
p.field = toField(f)
}
if tag == "" {
return
}
p.Parse(tag)
p.setEncAndDec(typ, lockGetProp)
}
var (
mutex sync.Mutex
propertiesMap = make(map[reflect.Type]*StructProperties)
)
// GetProperties returns the list of properties for the type represented by t.
// t must represent a generated struct type of a protocol message.
func GetProperties(t reflect.Type) *StructProperties {
if t.Kind() != reflect.Struct {
panic("proto: type must have kind struct")
}
mutex.Lock()
sprop := getPropertiesLocked(t)
mutex.Unlock()
return sprop
}
// getPropertiesLocked requires that mutex is held.
func getPropertiesLocked(t reflect.Type) *StructProperties {
if prop, ok := propertiesMap[t]; ok {
if collectStats {
stats.Chit++
}
return prop
}
if collectStats {
stats.Cmiss++
}
prop := new(StructProperties)
// in case of recursive protos, fill this in now.
propertiesMap[t] = prop
// build properties
prop.extendable = reflect.PtrTo(t).Implements(extendableProtoType)
prop.unrecField = invalidField
prop.Prop = make([]*Properties, t.NumField())
prop.order = make([]int, t.NumField())
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
p := new(Properties)
name := f.Name
p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false)
if f.Name == "XXX_extensions" { // special case
p.enc = (*Buffer).enc_map
p.dec = nil // not needed
p.size = size_map
}
if f.Name == "XXX_unrecognized" { // special case
prop.unrecField = toField(&f)
}
prop.Prop[i] = p
prop.order[i] = i
if debug {
print(i, " ", f.Name, " ", t.String(), " ")
if p.Tag > 0 {
print(p.String())
}
print("\n")
}
if p.enc == nil && !strings.HasPrefix(f.Name, "XXX_") {
fmt.Fprintln(os.Stderr, "proto: no encoder for", f.Name, f.Type.String(), "[GetProperties]")
}
}
// Re-order prop.order.
sort.Sort(prop)
// build required counts
// build tags
reqCount := 0
prop.decoderOrigNames = make(map[string]int)
for i, p := range prop.Prop {
if strings.HasPrefix(p.Name, "XXX_") {
// Internal fields should not appear in tags/origNames maps.
// They are handled specially when encoding and decoding.
continue
}
if p.Required {
reqCount++
}
prop.decoderTags.put(p.Tag, i)
prop.decoderOrigNames[p.OrigName] = i
}
prop.reqCount = reqCount
return prop
}
// Return the Properties object for the x[0]'th field of the structure.
func propByIndex(t reflect.Type, x []int) *Properties {
if len(x) != 1 {
fmt.Fprintf(os.Stderr, "proto: field index dimension %d (not 1) for type %s\n", len(x), t)
return nil
}
prop := GetProperties(t)
return prop.Prop[x[0]]
}
// Get the address and type of a pointer to a struct from an interface.
func getbase(pb Message) (t reflect.Type, b structPointer, err error) {
if pb == nil {
err = ErrNil
return
}
// get the reflect type of the pointer to the struct.
t = reflect.TypeOf(pb)
// get the address of the struct.
value := reflect.ValueOf(pb)
b = toStructPointer(value)
return
}
// A global registry of enum types.
// The generated code will register the generated maps by calling RegisterEnum.
var enumValueMaps = make(map[string]map[string]int32)
// RegisterEnum is called from the generated code to install the enum descriptor
// maps into the global table to aid parsing text format protocol buffers.
func RegisterEnum(typeName string, unusedNameMap map[int32]string, valueMap map[string]int32) {
if _, ok := enumValueMaps[typeName]; ok {
panic("proto: duplicate enum registered: " + typeName)
}
enumValueMaps[typeName] = valueMap
}

View File

@ -0,0 +1,63 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2012 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
import (
"testing"
)
// This is a separate file and package from size_test.go because that one uses
// generated messages and thus may not be in package proto without having a circular
// dependency, whereas this file tests unexported details of size.go.
func TestVarintSize(t *testing.T) {
// Check the edge cases carefully.
testCases := []struct {
n uint64
size int
}{
{0, 1},
{1, 1},
{127, 1},
{128, 2},
{16383, 2},
{16384, 3},
{1<<63 - 1, 9},
{1 << 63, 10},
}
for _, tc := range testCases {
size := sizeVarint(tc.n)
if size != tc.size {
t.Errorf("sizeVarint(%d) = %d, want %d", tc.n, size, tc.size)
}
}
}

View File

@ -0,0 +1,120 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2012 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto_test
import (
"log"
"testing"
pb "./testdata"
. "code.google.com/p/goprotobuf/proto"
)
var messageWithExtension1 = &pb.MyMessage{Count: Int32(7)}
// messageWithExtension2 is in equal_test.go.
var messageWithExtension3 = &pb.MyMessage{Count: Int32(8)}
func init() {
if err := SetExtension(messageWithExtension1, pb.E_Ext_More, &pb.Ext{Data: String("Abbott")}); err != nil {
log.Panicf("SetExtension: %v", err)
}
if err := SetExtension(messageWithExtension3, pb.E_Ext_More, &pb.Ext{Data: String("Costello")}); err != nil {
log.Panicf("SetExtension: %v", err)
}
// Force messageWithExtension3 to have the extension encoded.
Marshal(messageWithExtension3)
}
var SizeTests = []struct {
desc string
pb Message
}{
{"empty", &pb.OtherMessage{}},
// Basic types.
{"bool", &pb.Defaults{F_Bool: Bool(true)}},
{"int32", &pb.Defaults{F_Int32: Int32(12)}},
{"negative int32", &pb.Defaults{F_Int32: Int32(-1)}},
{"small int64", &pb.Defaults{F_Int64: Int64(1)}},
{"big int64", &pb.Defaults{F_Int64: Int64(1 << 20)}},
{"negative int64", &pb.Defaults{F_Int64: Int64(-1)}},
{"fixed32", &pb.Defaults{F_Fixed32: Uint32(71)}},
{"fixed64", &pb.Defaults{F_Fixed64: Uint64(72)}},
{"uint32", &pb.Defaults{F_Uint32: Uint32(123)}},
{"uint64", &pb.Defaults{F_Uint64: Uint64(124)}},
{"float", &pb.Defaults{F_Float: Float32(12.6)}},
{"double", &pb.Defaults{F_Double: Float64(13.9)}},
{"string", &pb.Defaults{F_String: String("niles")}},
{"bytes", &pb.Defaults{F_Bytes: []byte("wowsa")}},
{"bytes, empty", &pb.Defaults{F_Bytes: []byte{}}},
{"sint32", &pb.Defaults{F_Sint32: Int32(65)}},
{"sint64", &pb.Defaults{F_Sint64: Int64(67)}},
{"enum", &pb.Defaults{F_Enum: pb.Defaults_BLUE.Enum()}},
// Repeated.
{"empty repeated bool", &pb.MoreRepeated{Bools: []bool{}}},
{"repeated bool", &pb.MoreRepeated{Bools: []bool{false, true, true, false}}},
{"packed repeated bool", &pb.MoreRepeated{BoolsPacked: []bool{false, true, true, false, true, true, true}}},
{"repeated int32", &pb.MoreRepeated{Ints: []int32{1, 12203, 1729, -1}}},
{"repeated int32 packed", &pb.MoreRepeated{IntsPacked: []int32{1, 12203, 1729}}},
{"repeated int64 packed", &pb.MoreRepeated{Int64SPacked: []int64{
// Need enough large numbers to verify that the header is counting the number of bytes
// for the field, not the number of elements.
1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62,
1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62, 1 << 62,
}}},
{"repeated string", &pb.MoreRepeated{Strings: []string{"r", "ken", "gri"}}},
{"repeated fixed", &pb.MoreRepeated{Fixeds: []uint32{1, 2, 3, 4}}},
// Nested.
{"nested", &pb.OldMessage{Nested: &pb.OldMessage_Nested{Name: String("whatever")}}},
{"group", &pb.GroupOld{G: &pb.GroupOld_G{X: Int32(12345)}}},
// Other things.
{"unrecognized", &pb.MoreRepeated{XXX_unrecognized: []byte{13<<3 | 0, 4}}},
{"extension (unencoded)", messageWithExtension1},
{"extension (encoded)", messageWithExtension3},
}
func TestSize(t *testing.T) {
for _, tc := range SizeTests {
size := Size(tc.pb)
b, err := Marshal(tc.pb)
if err != nil {
t.Errorf("%v: Marshal failed: %v", tc.desc, err)
continue
}
if size != len(b) {
t.Errorf("%v: Size(%v) = %d, want %d", tc.desc, tc.pb, size, len(b))
t.Logf("%v: bytes: %#v", tc.desc, b)
}
}
}

View File

@ -0,0 +1,50 @@
# Go support for Protocol Buffers - Google's data interchange format
#
# Copyright 2010 The Go Authors. All rights reserved.
# http://code.google.com/p/goprotobuf/
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
include ../../Make.protobuf
all: regenerate
regenerate:
rm -f test.pb.go
make test.pb.go
# The following rules are just aids to development. Not needed for typical testing.
diff: regenerate
hg diff test.pb.go
restore:
cp test.pb.go.golden test.pb.go
preserve:
cp test.pb.go test.pb.go.golden

View File

@ -0,0 +1,86 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2012 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Verify that the compiler output for test.proto is unchanged.
package testdata
import (
"crypto/sha1"
"fmt"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"testing"
)
// sum returns in string form (for easy comparison) the SHA-1 hash of the named file.
func sum(t *testing.T, name string) string {
data, err := ioutil.ReadFile(name)
if err != nil {
t.Fatal(err)
}
t.Logf("sum(%q): length is %d", name, len(data))
hash := sha1.New()
_, err = hash.Write(data)
if err != nil {
t.Fatal(err)
}
return fmt.Sprintf("% x", hash.Sum(nil))
}
func run(t *testing.T, name string, args ...string) {
cmd := exec.Command(name, args...)
cmd.Stdin = os.Stdin
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
err := cmd.Run()
if err != nil {
t.Fatal(err)
}
}
func TestGolden(t *testing.T) {
// Compute the original checksum.
goldenSum := sum(t, "test.pb.go")
// Run the proto compiler.
run(t, "protoc", "--go_out="+os.TempDir(), "test.proto")
newFile := filepath.Join(os.TempDir(), "test.pb.go")
defer os.Remove(newFile)
// Compute the new checksum.
newSum := sum(t, newFile)
// Verify
if newSum != goldenSum {
run(t, "diff", "-u", "test.pb.go", newFile)
t.Fatal("Code generated by protoc-gen-go has changed; update test.pb.go")
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,428 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// A feature-rich test file for the protocol compiler and libraries.
syntax = "proto2";
package testdata;
enum FOO { FOO1 = 1; };
message GoEnum {
required FOO foo = 1;
}
message GoTestField {
required string Label = 1;
required string Type = 2;
}
message GoTest {
// An enum, for completeness.
enum KIND {
VOID = 0;
// Basic types
BOOL = 1;
BYTES = 2;
FINGERPRINT = 3;
FLOAT = 4;
INT = 5;
STRING = 6;
TIME = 7;
// Groupings
TUPLE = 8;
ARRAY = 9;
MAP = 10;
// Table types
TABLE = 11;
// Functions
FUNCTION = 12; // last tag
};
// Some typical parameters
required KIND Kind = 1;
optional string Table = 2;
optional int32 Param = 3;
// Required, repeated and optional foreign fields.
required GoTestField RequiredField = 4;
repeated GoTestField RepeatedField = 5;
optional GoTestField OptionalField = 6;
// Required fields of all basic types
required bool F_Bool_required = 10;
required int32 F_Int32_required = 11;
required int64 F_Int64_required = 12;
required fixed32 F_Fixed32_required = 13;
required fixed64 F_Fixed64_required = 14;
required uint32 F_Uint32_required = 15;
required uint64 F_Uint64_required = 16;
required float F_Float_required = 17;
required double F_Double_required = 18;
required string F_String_required = 19;
required bytes F_Bytes_required = 101;
required sint32 F_Sint32_required = 102;
required sint64 F_Sint64_required = 103;
// Repeated fields of all basic types
repeated bool F_Bool_repeated = 20;
repeated int32 F_Int32_repeated = 21;
repeated int64 F_Int64_repeated = 22;
repeated fixed32 F_Fixed32_repeated = 23;
repeated fixed64 F_Fixed64_repeated = 24;
repeated uint32 F_Uint32_repeated = 25;
repeated uint64 F_Uint64_repeated = 26;
repeated float F_Float_repeated = 27;
repeated double F_Double_repeated = 28;
repeated string F_String_repeated = 29;
repeated bytes F_Bytes_repeated = 201;
repeated sint32 F_Sint32_repeated = 202;
repeated sint64 F_Sint64_repeated = 203;
// Optional fields of all basic types
optional bool F_Bool_optional = 30;
optional int32 F_Int32_optional = 31;
optional int64 F_Int64_optional = 32;
optional fixed32 F_Fixed32_optional = 33;
optional fixed64 F_Fixed64_optional = 34;
optional uint32 F_Uint32_optional = 35;
optional uint64 F_Uint64_optional = 36;
optional float F_Float_optional = 37;
optional double F_Double_optional = 38;
optional string F_String_optional = 39;
optional bytes F_Bytes_optional = 301;
optional sint32 F_Sint32_optional = 302;
optional sint64 F_Sint64_optional = 303;
// Default-valued fields of all basic types
optional bool F_Bool_defaulted = 40 [default=true];
optional int32 F_Int32_defaulted = 41 [default=32];
optional int64 F_Int64_defaulted = 42 [default=64];
optional fixed32 F_Fixed32_defaulted = 43 [default=320];
optional fixed64 F_Fixed64_defaulted = 44 [default=640];
optional uint32 F_Uint32_defaulted = 45 [default=3200];
optional uint64 F_Uint64_defaulted = 46 [default=6400];
optional float F_Float_defaulted = 47 [default=314159.];
optional double F_Double_defaulted = 48 [default=271828.];
optional string F_String_defaulted = 49 [default="hello, \"world!\"\n"];
optional bytes F_Bytes_defaulted = 401 [default="Bignose"];
optional sint32 F_Sint32_defaulted = 402 [default = -32];
optional sint64 F_Sint64_defaulted = 403 [default = -64];
// Packed repeated fields (no string or bytes).
repeated bool F_Bool_repeated_packed = 50 [packed=true];
repeated int32 F_Int32_repeated_packed = 51 [packed=true];
repeated int64 F_Int64_repeated_packed = 52 [packed=true];
repeated fixed32 F_Fixed32_repeated_packed = 53 [packed=true];
repeated fixed64 F_Fixed64_repeated_packed = 54 [packed=true];
repeated uint32 F_Uint32_repeated_packed = 55 [packed=true];
repeated uint64 F_Uint64_repeated_packed = 56 [packed=true];
repeated float F_Float_repeated_packed = 57 [packed=true];
repeated double F_Double_repeated_packed = 58 [packed=true];
repeated sint32 F_Sint32_repeated_packed = 502 [packed=true];
repeated sint64 F_Sint64_repeated_packed = 503 [packed=true];
// Required, repeated, and optional groups.
required group RequiredGroup = 70 {
required string RequiredField = 71;
};
repeated group RepeatedGroup = 80 {
required string RequiredField = 81;
};
optional group OptionalGroup = 90 {
required string RequiredField = 91;
};
}
// For testing skipping of unrecognized fields.
// Numbers are all big, larger than tag numbers in GoTestField,
// the message used in the corresponding test.
message GoSkipTest {
required int32 skip_int32 = 11;
required fixed32 skip_fixed32 = 12;
required fixed64 skip_fixed64 = 13;
required string skip_string = 14;
required group SkipGroup = 15 {
required int32 group_int32 = 16;
required string group_string = 17;
}
}
// For testing packed/non-packed decoder switching.
// A serialized instance of one should be deserializable as the other.
message NonPackedTest {
repeated int32 a = 1;
}
message PackedTest {
repeated int32 b = 1 [packed=true];
}
message MaxTag {
// Maximum possible tag number.
optional string last_field = 536870911;
}
message OldMessage {
message Nested {
optional string name = 1;
}
optional Nested nested = 1;
optional int32 num = 2;
}
// NewMessage is wire compatible with OldMessage;
// imagine it as a future version.
message NewMessage {
message Nested {
optional string name = 1;
optional string food_group = 2;
}
optional Nested nested = 1;
// This is an int32 in OldMessage.
optional int64 num = 2;
}
// Smaller tests for ASCII formatting.
message InnerMessage {
required string host = 1;
optional int32 port = 2 [default=4000];
optional bool connected = 3;
}
message OtherMessage {
optional int64 key = 1;
optional bytes value = 2;
optional float weight = 3;
optional InnerMessage inner = 4;
}
message MyMessage {
required int32 count = 1;
optional string name = 2;
optional string quote = 3;
repeated string pet = 4;
optional InnerMessage inner = 5;
repeated OtherMessage others = 6;
repeated InnerMessage rep_inner = 12;
enum Color {
RED = 0;
GREEN = 1;
BLUE = 2;
};
optional Color bikeshed = 7;
optional group SomeGroup = 8 {
optional int32 group_field = 9;
}
// This field becomes [][]byte in the generated code.
repeated bytes rep_bytes = 10;
optional double bigfloat = 11;
extensions 100 to max;
}
message Ext {
extend MyMessage {
optional Ext more = 103;
optional string text = 104;
optional int32 number = 105;
}
optional string data = 1;
}
extend MyMessage {
repeated string greeting = 106;
}
message MyMessageSet {
option message_set_wire_format = true;
extensions 100 to max;
}
message Empty {
}
extend MyMessageSet {
optional Empty x201 = 201;
optional Empty x202 = 202;
optional Empty x203 = 203;
optional Empty x204 = 204;
optional Empty x205 = 205;
optional Empty x206 = 206;
optional Empty x207 = 207;
optional Empty x208 = 208;
optional Empty x209 = 209;
optional Empty x210 = 210;
optional Empty x211 = 211;
optional Empty x212 = 212;
optional Empty x213 = 213;
optional Empty x214 = 214;
optional Empty x215 = 215;
optional Empty x216 = 216;
optional Empty x217 = 217;
optional Empty x218 = 218;
optional Empty x219 = 219;
optional Empty x220 = 220;
optional Empty x221 = 221;
optional Empty x222 = 222;
optional Empty x223 = 223;
optional Empty x224 = 224;
optional Empty x225 = 225;
optional Empty x226 = 226;
optional Empty x227 = 227;
optional Empty x228 = 228;
optional Empty x229 = 229;
optional Empty x230 = 230;
optional Empty x231 = 231;
optional Empty x232 = 232;
optional Empty x233 = 233;
optional Empty x234 = 234;
optional Empty x235 = 235;
optional Empty x236 = 236;
optional Empty x237 = 237;
optional Empty x238 = 238;
optional Empty x239 = 239;
optional Empty x240 = 240;
optional Empty x241 = 241;
optional Empty x242 = 242;
optional Empty x243 = 243;
optional Empty x244 = 244;
optional Empty x245 = 245;
optional Empty x246 = 246;
optional Empty x247 = 247;
optional Empty x248 = 248;
optional Empty x249 = 249;
optional Empty x250 = 250;
}
message MessageList {
repeated group Message = 1 {
required string name = 2;
required int32 count = 3;
}
}
message Strings {
optional string string_field = 1;
optional bytes bytes_field = 2;
}
message Defaults {
enum Color {
RED = 0;
GREEN = 1;
BLUE = 2;
}
// Default-valued fields of all basic types.
// Same as GoTest, but copied here to make testing easier.
optional bool F_Bool = 1 [default=true];
optional int32 F_Int32 = 2 [default=32];
optional int64 F_Int64 = 3 [default=64];
optional fixed32 F_Fixed32 = 4 [default=320];
optional fixed64 F_Fixed64 = 5 [default=640];
optional uint32 F_Uint32 = 6 [default=3200];
optional uint64 F_Uint64 = 7 [default=6400];
optional float F_Float = 8 [default=314159.];
optional double F_Double = 9 [default=271828.];
optional string F_String = 10 [default="hello, \"world!\"\n"];
optional bytes F_Bytes = 11 [default="Bignose"];
optional sint32 F_Sint32 = 12 [default=-32];
optional sint64 F_Sint64 = 13 [default=-64];
optional Color F_Enum = 14 [default=GREEN];
// More fields with crazy defaults.
optional float F_Pinf = 15 [default=inf];
optional float F_Ninf = 16 [default=-inf];
optional float F_Nan = 17 [default=nan];
// Sub-message.
optional SubDefaults sub = 18;
// Redundant but explicit defaults.
optional string str_zero = 19 [default=""];
}
message SubDefaults {
optional int64 n = 1 [default=7];
}
message RepeatedEnum {
enum Color {
RED = 1;
}
repeated Color color = 1;
}
message MoreRepeated {
repeated bool bools = 1;
repeated bool bools_packed = 2 [packed=true];
repeated int32 ints = 3;
repeated int32 ints_packed = 4 [packed=true];
repeated int64 int64s_packed = 7 [packed=true];
repeated string strings = 5;
repeated fixed32 fixeds = 6;
}
// GroupOld and GroupNew have the same wire format.
// GroupNew has a new field inside a group.
message GroupOld {
optional group G = 101 {
optional int32 x = 2;
}
}
message GroupNew {
optional group G = 101 {
optional int32 x = 2;
optional int32 y = 3;
}
}
message FloatingPoint {
required double f = 1;
}

View File

@ -0,0 +1,695 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
// Functions for writing the text protocol buffer format.
import (
"bufio"
"bytes"
"encoding"
"fmt"
"io"
"log"
"math"
"os"
"reflect"
"sort"
"strings"
)
var (
newline = []byte("\n")
spaces = []byte(" ")
gtNewline = []byte(">\n")
endBraceNewline = []byte("}\n")
backslashN = []byte{'\\', 'n'}
backslashR = []byte{'\\', 'r'}
backslashT = []byte{'\\', 't'}
backslashDQ = []byte{'\\', '"'}
backslashBS = []byte{'\\', '\\'}
posInf = []byte("inf")
negInf = []byte("-inf")
nan = []byte("nan")
)
type writer interface {
io.Writer
WriteByte(byte) error
}
// textWriter is an io.Writer that tracks its indentation level.
type textWriter struct {
ind int
complete bool // if the current position is a complete line
compact bool // whether to write out as a one-liner
w writer
}
func (w *textWriter) WriteString(s string) (n int, err error) {
if !strings.Contains(s, "\n") {
if !w.compact && w.complete {
w.writeIndent()
}
w.complete = false
return io.WriteString(w.w, s)
}
// WriteString is typically called without newlines, so this
// codepath and its copy are rare. We copy to avoid
// duplicating all of Write's logic here.
return w.Write([]byte(s))
}
func (w *textWriter) Write(p []byte) (n int, err error) {
newlines := bytes.Count(p, newline)
if newlines == 0 {
if !w.compact && w.complete {
w.writeIndent()
}
n, err = w.w.Write(p)
w.complete = false
return n, err
}
frags := bytes.SplitN(p, newline, newlines+1)
if w.compact {
for i, frag := range frags {
if i > 0 {
if err := w.w.WriteByte(' '); err != nil {
return n, err
}
n++
}
nn, err := w.w.Write(frag)
n += nn
if err != nil {
return n, err
}
}
return n, nil
}
for i, frag := range frags {
if w.complete {
w.writeIndent()
}
nn, err := w.w.Write(frag)
n += nn
if err != nil {
return n, err
}
if i+1 < len(frags) {
if err := w.w.WriteByte('\n'); err != nil {
return n, err
}
n++
}
}
w.complete = len(frags[len(frags)-1]) == 0
return n, nil
}
func (w *textWriter) WriteByte(c byte) error {
if w.compact && c == '\n' {
c = ' '
}
if !w.compact && w.complete {
w.writeIndent()
}
err := w.w.WriteByte(c)
w.complete = c == '\n'
return err
}
func (w *textWriter) indent() { w.ind++ }
func (w *textWriter) unindent() {
if w.ind == 0 {
log.Printf("proto: textWriter unindented too far")
return
}
w.ind--
}
func writeName(w *textWriter, props *Properties) error {
if _, err := w.WriteString(props.OrigName); err != nil {
return err
}
if props.Wire != "group" {
return w.WriteByte(':')
}
return nil
}
var (
messageSetType = reflect.TypeOf((*MessageSet)(nil)).Elem()
)
// raw is the interface satisfied by RawMessage.
type raw interface {
Bytes() []byte
}
func writeStruct(w *textWriter, sv reflect.Value) error {
if sv.Type() == messageSetType {
return writeMessageSet(w, sv.Addr().Interface().(*MessageSet))
}
st := sv.Type()
sprops := GetProperties(st)
for i := 0; i < sv.NumField(); i++ {
fv := sv.Field(i)
props := sprops.Prop[i]
name := st.Field(i).Name
if strings.HasPrefix(name, "XXX_") {
// There are two XXX_ fields:
// XXX_unrecognized []byte
// XXX_extensions map[int32]proto.Extension
// The first is handled here;
// the second is handled at the bottom of this function.
if name == "XXX_unrecognized" && !fv.IsNil() {
if err := writeUnknownStruct(w, fv.Interface().([]byte)); err != nil {
return err
}
}
continue
}
if fv.Kind() == reflect.Ptr && fv.IsNil() {
// Field not filled in. This could be an optional field or
// a required field that wasn't filled in. Either way, there
// isn't anything we can show for it.
continue
}
if fv.Kind() == reflect.Slice && fv.IsNil() {
// Repeated field that is empty, or a bytes field that is unused.
continue
}
if props.Repeated && fv.Kind() == reflect.Slice {
// Repeated field.
for j := 0; j < fv.Len(); j++ {
if err := writeName(w, props); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
v := fv.Index(j)
if v.Kind() == reflect.Ptr && v.IsNil() {
// A nil message in a repeated field is not valid,
// but we can handle that more gracefully than panicking.
if _, err := w.Write([]byte("<nil>\n")); err != nil {
return err
}
continue
}
if err := writeAny(w, v, props); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
}
continue
}
if err := writeName(w, props); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
if b, ok := fv.Interface().(raw); ok {
if err := writeRaw(w, b.Bytes()); err != nil {
return err
}
continue
}
// Enums have a String method, so writeAny will work fine.
if err := writeAny(w, fv, props); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
}
// Extensions (the XXX_extensions field).
pv := sv.Addr()
if pv.Type().Implements(extendableProtoType) {
if err := writeExtensions(w, pv); err != nil {
return err
}
}
return nil
}
// writeRaw writes an uninterpreted raw message.
func writeRaw(w *textWriter, b []byte) error {
if err := w.WriteByte('<'); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte('\n'); err != nil {
return err
}
}
w.indent()
if err := writeUnknownStruct(w, b); err != nil {
return err
}
w.unindent()
if err := w.WriteByte('>'); err != nil {
return err
}
return nil
}
// writeAny writes an arbitrary field.
func writeAny(w *textWriter, v reflect.Value, props *Properties) error {
v = reflect.Indirect(v)
// Floats have special cases.
if v.Kind() == reflect.Float32 || v.Kind() == reflect.Float64 {
x := v.Float()
var b []byte
switch {
case math.IsInf(x, 1):
b = posInf
case math.IsInf(x, -1):
b = negInf
case math.IsNaN(x):
b = nan
}
if b != nil {
_, err := w.Write(b)
return err
}
// Other values are handled below.
}
// We don't attempt to serialise every possible value type; only those
// that can occur in protocol buffers.
switch v.Kind() {
case reflect.Slice:
// Should only be a []byte; repeated fields are handled in writeStruct.
if err := writeString(w, string(v.Interface().([]byte))); err != nil {
return err
}
case reflect.String:
if err := writeString(w, v.String()); err != nil {
return err
}
case reflect.Struct:
// Required/optional group/message.
var bra, ket byte = '<', '>'
if props != nil && props.Wire == "group" {
bra, ket = '{', '}'
}
if err := w.WriteByte(bra); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte('\n'); err != nil {
return err
}
}
w.indent()
if tm, ok := v.Interface().(encoding.TextMarshaler); ok {
text, err := tm.MarshalText()
if err != nil {
return err
}
if _, err = w.Write(text); err != nil {
return err
}
} else if err := writeStruct(w, v); err != nil {
return err
}
w.unindent()
if err := w.WriteByte(ket); err != nil {
return err
}
default:
_, err := fmt.Fprint(w, v.Interface())
return err
}
return nil
}
// equivalent to C's isprint.
func isprint(c byte) bool {
return c >= 0x20 && c < 0x7f
}
// writeString writes a string in the protocol buffer text format.
// It is similar to strconv.Quote except we don't use Go escape sequences,
// we treat the string as a byte sequence, and we use octal escapes.
// These differences are to maintain interoperability with the other
// languages' implementations of the text format.
func writeString(w *textWriter, s string) error {
// use WriteByte here to get any needed indent
if err := w.WriteByte('"'); err != nil {
return err
}
// Loop over the bytes, not the runes.
for i := 0; i < len(s); i++ {
var err error
// Divergence from C++: we don't escape apostrophes.
// There's no need to escape them, and the C++ parser
// copes with a naked apostrophe.
switch c := s[i]; c {
case '\n':
_, err = w.w.Write(backslashN)
case '\r':
_, err = w.w.Write(backslashR)
case '\t':
_, err = w.w.Write(backslashT)
case '"':
_, err = w.w.Write(backslashDQ)
case '\\':
_, err = w.w.Write(backslashBS)
default:
if isprint(c) {
err = w.w.WriteByte(c)
} else {
_, err = fmt.Fprintf(w.w, "\\%03o", c)
}
}
if err != nil {
return err
}
}
return w.WriteByte('"')
}
func writeMessageSet(w *textWriter, ms *MessageSet) error {
for _, item := range ms.Item {
id := *item.TypeId
if msd, ok := messageSetMap[id]; ok {
// Known message set type.
if _, err := fmt.Fprintf(w, "[%s]: <\n", msd.name); err != nil {
return err
}
w.indent()
pb := reflect.New(msd.t.Elem())
if err := Unmarshal(item.Message, pb.Interface().(Message)); err != nil {
if _, err := fmt.Fprintf(w, "/* bad message: %v */\n", err); err != nil {
return err
}
} else {
if err := writeStruct(w, pb.Elem()); err != nil {
return err
}
}
} else {
// Unknown type.
if _, err := fmt.Fprintf(w, "[%d]: <\n", id); err != nil {
return err
}
w.indent()
if err := writeUnknownStruct(w, item.Message); err != nil {
return err
}
}
w.unindent()
if _, err := w.Write(gtNewline); err != nil {
return err
}
}
return nil
}
func writeUnknownStruct(w *textWriter, data []byte) (err error) {
if !w.compact {
if _, err := fmt.Fprintf(w, "/* %d unknown bytes */\n", len(data)); err != nil {
return err
}
}
b := NewBuffer(data)
for b.index < len(b.buf) {
x, err := b.DecodeVarint()
if err != nil {
_, err := fmt.Fprintf(w, "/* %v */\n", err)
return err
}
wire, tag := x&7, x>>3
if wire == WireEndGroup {
w.unindent()
if _, err := w.Write(endBraceNewline); err != nil {
return err
}
continue
}
if _, err := fmt.Fprint(w, tag); err != nil {
return err
}
if wire != WireStartGroup {
if err := w.WriteByte(':'); err != nil {
return err
}
}
if !w.compact || wire == WireStartGroup {
if err := w.WriteByte(' '); err != nil {
return err
}
}
switch wire {
case WireBytes:
buf, e := b.DecodeRawBytes(false)
if e == nil {
_, err = fmt.Fprintf(w, "%q", buf)
} else {
_, err = fmt.Fprintf(w, "/* %v */", e)
}
case WireFixed32:
x, err = b.DecodeFixed32()
err = writeUnknownInt(w, x, err)
case WireFixed64:
x, err = b.DecodeFixed64()
err = writeUnknownInt(w, x, err)
case WireStartGroup:
err = w.WriteByte('{')
w.indent()
case WireVarint:
x, err = b.DecodeVarint()
err = writeUnknownInt(w, x, err)
default:
_, err = fmt.Fprintf(w, "/* unknown wire type %d */", wire)
}
if err != nil {
return err
}
if err = w.WriteByte('\n'); err != nil {
return err
}
}
return nil
}
func writeUnknownInt(w *textWriter, x uint64, err error) error {
if err == nil {
_, err = fmt.Fprint(w, x)
} else {
_, err = fmt.Fprintf(w, "/* %v */", err)
}
return err
}
type int32Slice []int32
func (s int32Slice) Len() int { return len(s) }
func (s int32Slice) Less(i, j int) bool { return s[i] < s[j] }
func (s int32Slice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// writeExtensions writes all the extensions in pv.
// pv is assumed to be a pointer to a protocol message struct that is extendable.
func writeExtensions(w *textWriter, pv reflect.Value) error {
emap := extensionMaps[pv.Type().Elem()]
ep := pv.Interface().(extendableProto)
// Order the extensions by ID.
// This isn't strictly necessary, but it will give us
// canonical output, which will also make testing easier.
m := ep.ExtensionMap()
ids := make([]int32, 0, len(m))
for id := range m {
ids = append(ids, id)
}
sort.Sort(int32Slice(ids))
for _, extNum := range ids {
ext := m[extNum]
var desc *ExtensionDesc
if emap != nil {
desc = emap[extNum]
}
if desc == nil {
// Unknown extension.
if err := writeUnknownStruct(w, ext.enc); err != nil {
return err
}
continue
}
pb, err := GetExtension(ep, desc)
if err != nil {
if _, err := fmt.Fprintln(os.Stderr, "proto: failed getting extension: ", err); err != nil {
return err
}
continue
}
// Repeated extensions will appear as a slice.
if !desc.repeated() {
if err := writeExtension(w, desc.Name, pb); err != nil {
return err
}
} else {
v := reflect.ValueOf(pb)
for i := 0; i < v.Len(); i++ {
if err := writeExtension(w, desc.Name, v.Index(i).Interface()); err != nil {
return err
}
}
}
}
return nil
}
func writeExtension(w *textWriter, name string, pb interface{}) error {
if _, err := fmt.Fprintf(w, "[%s]:", name); err != nil {
return err
}
if !w.compact {
if err := w.WriteByte(' '); err != nil {
return err
}
}
if err := writeAny(w, reflect.ValueOf(pb), nil); err != nil {
return err
}
if err := w.WriteByte('\n'); err != nil {
return err
}
return nil
}
func (w *textWriter) writeIndent() {
if !w.complete {
return
}
remain := w.ind * 2
for remain > 0 {
n := remain
if n > len(spaces) {
n = len(spaces)
}
w.w.Write(spaces[:n])
remain -= n
}
w.complete = false
}
func marshalText(w io.Writer, pb Message, compact bool) error {
val := reflect.ValueOf(pb)
if pb == nil || val.IsNil() {
w.Write([]byte("<nil>"))
return nil
}
var bw *bufio.Writer
ww, ok := w.(writer)
if !ok {
bw = bufio.NewWriter(w)
ww = bw
}
aw := &textWriter{
w: ww,
complete: true,
compact: compact,
}
if tm, ok := pb.(encoding.TextMarshaler); ok {
text, err := tm.MarshalText()
if err != nil {
return err
}
if _, err = aw.Write(text); err != nil {
return err
}
if bw != nil {
return bw.Flush()
}
return nil
}
// Dereference the received pointer so we don't have outer < and >.
v := reflect.Indirect(val)
if err := writeStruct(aw, v); err != nil {
return err
}
if bw != nil {
return bw.Flush()
}
return nil
}
// MarshalText writes a given protocol buffer in text format.
// The only errors returned are from w.
func MarshalText(w io.Writer, pb Message) error {
return marshalText(w, pb, false)
}
// MarshalTextString is the same as MarshalText, but returns the string directly.
func MarshalTextString(pb Message) string {
var buf bytes.Buffer
marshalText(&buf, pb, false)
return buf.String()
}
// CompactText writes a given protocol buffer in compact text format (one line).
func CompactText(w io.Writer, pb Message) error { return marshalText(w, pb, true) }
// CompactTextString is the same as CompactText, but returns the string directly.
func CompactTextString(pb Message) string {
var buf bytes.Buffer
marshalText(&buf, pb, true)
return buf.String()
}

View File

@ -0,0 +1,687 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto
// Functions for parsing the Text protocol buffer format.
// TODO: message sets.
import (
"encoding"
"errors"
"fmt"
"reflect"
"strconv"
"strings"
"unicode/utf8"
)
type ParseError struct {
Message string
Line int // 1-based line number
Offset int // 0-based byte offset from start of input
}
func (p *ParseError) Error() string {
if p.Line == 1 {
// show offset only for first line
return fmt.Sprintf("line 1.%d: %v", p.Offset, p.Message)
}
return fmt.Sprintf("line %d: %v", p.Line, p.Message)
}
type token struct {
value string
err *ParseError
line int // line number
offset int // byte number from start of input, not start of line
unquoted string // the unquoted version of value, if it was a quoted string
}
func (t *token) String() string {
if t.err == nil {
return fmt.Sprintf("%q (line=%d, offset=%d)", t.value, t.line, t.offset)
}
return fmt.Sprintf("parse error: %v", t.err)
}
type textParser struct {
s string // remaining input
done bool // whether the parsing is finished (success or error)
backed bool // whether back() was called
offset, line int
cur token
}
func newTextParser(s string) *textParser {
p := new(textParser)
p.s = s
p.line = 1
p.cur.line = 1
return p
}
func (p *textParser) errorf(format string, a ...interface{}) *ParseError {
pe := &ParseError{fmt.Sprintf(format, a...), p.cur.line, p.cur.offset}
p.cur.err = pe
p.done = true
return pe
}
// Numbers and identifiers are matched by [-+._A-Za-z0-9]
func isIdentOrNumberChar(c byte) bool {
switch {
case 'A' <= c && c <= 'Z', 'a' <= c && c <= 'z':
return true
case '0' <= c && c <= '9':
return true
}
switch c {
case '-', '+', '.', '_':
return true
}
return false
}
func isWhitespace(c byte) bool {
switch c {
case ' ', '\t', '\n', '\r':
return true
}
return false
}
func (p *textParser) skipWhitespace() {
i := 0
for i < len(p.s) && (isWhitespace(p.s[i]) || p.s[i] == '#') {
if p.s[i] == '#' {
// comment; skip to end of line or input
for i < len(p.s) && p.s[i] != '\n' {
i++
}
if i == len(p.s) {
break
}
}
if p.s[i] == '\n' {
p.line++
}
i++
}
p.offset += i
p.s = p.s[i:len(p.s)]
if len(p.s) == 0 {
p.done = true
}
}
func (p *textParser) advance() {
// Skip whitespace
p.skipWhitespace()
if p.done {
return
}
// Start of non-whitespace
p.cur.err = nil
p.cur.offset, p.cur.line = p.offset, p.line
p.cur.unquoted = ""
switch p.s[0] {
case '<', '>', '{', '}', ':', '[', ']', ';', ',':
// Single symbol
p.cur.value, p.s = p.s[0:1], p.s[1:len(p.s)]
case '"', '\'':
// Quoted string
i := 1
for i < len(p.s) && p.s[i] != p.s[0] && p.s[i] != '\n' {
if p.s[i] == '\\' && i+1 < len(p.s) {
// skip escaped char
i++
}
i++
}
if i >= len(p.s) || p.s[i] != p.s[0] {
p.errorf("unmatched quote")
return
}
unq, err := unquoteC(p.s[1:i], rune(p.s[0]))
if err != nil {
p.errorf("invalid quoted string %v", p.s[0:i+1])
return
}
p.cur.value, p.s = p.s[0:i+1], p.s[i+1:len(p.s)]
p.cur.unquoted = unq
default:
i := 0
for i < len(p.s) && isIdentOrNumberChar(p.s[i]) {
i++
}
if i == 0 {
p.errorf("unexpected byte %#x", p.s[0])
return
}
p.cur.value, p.s = p.s[0:i], p.s[i:len(p.s)]
}
p.offset += len(p.cur.value)
}
var (
errBadUTF8 = errors.New("proto: bad UTF-8")
errBadHex = errors.New("proto: bad hexadecimal")
)
func unquoteC(s string, quote rune) (string, error) {
// This is based on C++'s tokenizer.cc.
// Despite its name, this is *not* parsing C syntax.
// For instance, "\0" is an invalid quoted string.
// Avoid allocation in trivial cases.
simple := true
for _, r := range s {
if r == '\\' || r == quote {
simple = false
break
}
}
if simple {
return s, nil
}
buf := make([]byte, 0, 3*len(s)/2)
for len(s) > 0 {
r, n := utf8.DecodeRuneInString(s)
if r == utf8.RuneError && n == 1 {
return "", errBadUTF8
}
s = s[n:]
if r != '\\' {
if r < utf8.RuneSelf {
buf = append(buf, byte(r))
} else {
buf = append(buf, string(r)...)
}
continue
}
ch, tail, err := unescape(s)
if err != nil {
return "", err
}
buf = append(buf, ch...)
s = tail
}
return string(buf), nil
}
func unescape(s string) (ch string, tail string, err error) {
r, n := utf8.DecodeRuneInString(s)
if r == utf8.RuneError && n == 1 {
return "", "", errBadUTF8
}
s = s[n:]
switch r {
case 'a':
return "\a", s, nil
case 'b':
return "\b", s, nil
case 'f':
return "\f", s, nil
case 'n':
return "\n", s, nil
case 'r':
return "\r", s, nil
case 't':
return "\t", s, nil
case 'v':
return "\v", s, nil
case '?':
return "?", s, nil // trigraph workaround
case '\'', '"', '\\':
return string(r), s, nil
case '0', '1', '2', '3', '4', '5', '6', '7', 'x', 'X':
if len(s) < 2 {
return "", "", fmt.Errorf(`\%c requires 2 following digits`, r)
}
base := 8
ss := s[:2]
s = s[2:]
if r == 'x' || r == 'X' {
base = 16
} else {
ss = string(r) + ss
}
i, err := strconv.ParseUint(ss, base, 8)
if err != nil {
return "", "", err
}
return string([]byte{byte(i)}), s, nil
case 'u', 'U':
n := 4
if r == 'U' {
n = 8
}
if len(s) < n {
return "", "", fmt.Errorf(`\%c requires %d digits`, r, n)
}
bs := make([]byte, n/2)
for i := 0; i < n; i += 2 {
a, ok1 := unhex(s[i])
b, ok2 := unhex(s[i+1])
if !ok1 || !ok2 {
return "", "", errBadHex
}
bs[i/2] = a<<4 | b
}
s = s[n:]
return string(bs), s, nil
}
return "", "", fmt.Errorf(`unknown escape \%c`, r)
}
// Adapted from src/pkg/strconv/quote.go.
func unhex(b byte) (v byte, ok bool) {
switch {
case '0' <= b && b <= '9':
return b - '0', true
case 'a' <= b && b <= 'f':
return b - 'a' + 10, true
case 'A' <= b && b <= 'F':
return b - 'A' + 10, true
}
return 0, false
}
// Back off the parser by one token. Can only be done between calls to next().
// It makes the next advance() a no-op.
func (p *textParser) back() { p.backed = true }
// Advances the parser and returns the new current token.
func (p *textParser) next() *token {
if p.backed || p.done {
p.backed = false
return &p.cur
}
p.advance()
if p.done {
p.cur.value = ""
} else if len(p.cur.value) > 0 && p.cur.value[0] == '"' {
// Look for multiple quoted strings separated by whitespace,
// and concatenate them.
cat := p.cur
for {
p.skipWhitespace()
if p.done || p.s[0] != '"' {
break
}
p.advance()
if p.cur.err != nil {
return &p.cur
}
cat.value += " " + p.cur.value
cat.unquoted += p.cur.unquoted
}
p.done = false // parser may have seen EOF, but we want to return cat
p.cur = cat
}
return &p.cur
}
// Return a RequiredNotSetError indicating which required field was not set.
func (p *textParser) missingRequiredFieldError(sv reflect.Value) *RequiredNotSetError {
st := sv.Type()
sprops := GetProperties(st)
for i := 0; i < st.NumField(); i++ {
if !isNil(sv.Field(i)) {
continue
}
props := sprops.Prop[i]
if props.Required {
return &RequiredNotSetError{fmt.Sprintf("%v.%v", st, props.OrigName)}
}
}
return &RequiredNotSetError{fmt.Sprintf("%v.<unknown field name>", st)} // should not happen
}
// Returns the index in the struct for the named field, as well as the parsed tag properties.
func structFieldByName(st reflect.Type, name string) (int, *Properties, bool) {
sprops := GetProperties(st)
i, ok := sprops.decoderOrigNames[name]
if ok {
return i, sprops.Prop[i], true
}
return -1, nil, false
}
// Consume a ':' from the input stream (if the next token is a colon),
// returning an error if a colon is needed but not present.
func (p *textParser) checkForColon(props *Properties, typ reflect.Type) *ParseError {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value != ":" {
// Colon is optional when the field is a group or message.
needColon := true
switch props.Wire {
case "group":
needColon = false
case "bytes":
// A "bytes" field is either a message, a string, or a repeated field;
// those three become *T, *string and []T respectively, so we can check for
// this field being a pointer to a non-string.
if typ.Kind() == reflect.Ptr {
// *T or *string
if typ.Elem().Kind() == reflect.String {
break
}
} else if typ.Kind() == reflect.Slice {
// []T or []*T
if typ.Elem().Kind() != reflect.Ptr {
break
}
}
needColon = false
}
if needColon {
return p.errorf("expected ':', found %q", tok.value)
}
p.back()
}
return nil
}
func (p *textParser) readStruct(sv reflect.Value, terminator string) error {
st := sv.Type()
reqCount := GetProperties(st).reqCount
var reqFieldErr error
fieldSet := make(map[string]bool)
// A struct is a sequence of "name: value", terminated by one of
// '>' or '}', or the end of the input. A name may also be
// "[extension]".
for {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == terminator {
break
}
if tok.value == "[" {
// Looks like an extension.
//
// TODO: Check whether we need to handle
// namespace rooted names (e.g. ".something.Foo").
tok = p.next()
if tok.err != nil {
return tok.err
}
var desc *ExtensionDesc
// This could be faster, but it's functional.
// TODO: Do something smarter than a linear scan.
for _, d := range RegisteredExtensions(reflect.New(st).Interface().(Message)) {
if d.Name == tok.value {
desc = d
break
}
}
if desc == nil {
return p.errorf("unrecognized extension %q", tok.value)
}
// Check the extension terminator.
tok = p.next()
if tok.err != nil {
return tok.err
}
if tok.value != "]" {
return p.errorf("unrecognized extension terminator %q", tok.value)
}
props := &Properties{}
props.Parse(desc.Tag)
typ := reflect.TypeOf(desc.ExtensionType)
if err := p.checkForColon(props, typ); err != nil {
return err
}
rep := desc.repeated()
// Read the extension structure, and set it in
// the value we're constructing.
var ext reflect.Value
if !rep {
ext = reflect.New(typ).Elem()
} else {
ext = reflect.New(typ.Elem()).Elem()
}
if err := p.readAny(ext, props); err != nil {
if _, ok := err.(*RequiredNotSetError); !ok {
return err
}
reqFieldErr = err
}
ep := sv.Addr().Interface().(extendableProto)
if !rep {
SetExtension(ep, desc, ext.Interface())
} else {
old, err := GetExtension(ep, desc)
var sl reflect.Value
if err == nil {
sl = reflect.ValueOf(old) // existing slice
} else {
sl = reflect.MakeSlice(typ, 0, 1)
}
sl = reflect.Append(sl, ext)
SetExtension(ep, desc, sl.Interface())
}
} else {
// This is a normal, non-extension field.
name := tok.value
fi, props, ok := structFieldByName(st, name)
if !ok {
return p.errorf("unknown field name %q in %v", name, st)
}
dst := sv.Field(fi)
// Check that it's not already set if it's not a repeated field.
if !props.Repeated && fieldSet[name] {
return p.errorf("non-repeated field %q was repeated", name)
}
if err := p.checkForColon(props, st.Field(fi).Type); err != nil {
return err
}
// Parse into the field.
fieldSet[name] = true
if err := p.readAny(dst, props); err != nil {
if _, ok := err.(*RequiredNotSetError); !ok {
return err
}
reqFieldErr = err
} else if props.Required {
reqCount--
}
}
// For backward compatibility, permit a semicolon or comma after a field.
tok = p.next()
if tok.err != nil {
return tok.err
}
if tok.value != ";" && tok.value != "," {
p.back()
}
}
if reqCount > 0 {
return p.missingRequiredFieldError(sv)
}
return reqFieldErr
}
func (p *textParser) readAny(v reflect.Value, props *Properties) error {
tok := p.next()
if tok.err != nil {
return tok.err
}
if tok.value == "" {
return p.errorf("unexpected EOF")
}
switch fv := v; fv.Kind() {
case reflect.Slice:
at := v.Type()
if at.Elem().Kind() == reflect.Uint8 {
// Special case for []byte
if tok.value[0] != '"' && tok.value[0] != '\'' {
// Deliberately written out here, as the error after
// this switch statement would write "invalid []byte: ...",
// which is not as user-friendly.
return p.errorf("invalid string: %v", tok.value)
}
bytes := []byte(tok.unquoted)
fv.Set(reflect.ValueOf(bytes))
return nil
}
// Repeated field. May already exist.
flen := fv.Len()
if flen == fv.Cap() {
nav := reflect.MakeSlice(at, flen, 2*flen+1)
reflect.Copy(nav, fv)
fv.Set(nav)
}
fv.SetLen(flen + 1)
// Read one.
p.back()
return p.readAny(fv.Index(flen), props)
case reflect.Bool:
// Either "true", "false", 1 or 0.
switch tok.value {
case "true", "1":
fv.SetBool(true)
return nil
case "false", "0":
fv.SetBool(false)
return nil
}
case reflect.Float32, reflect.Float64:
v := tok.value
// Ignore 'f' for compatibility with output generated by C++, but don't
// remove 'f' when the value is "-inf" or "inf".
if strings.HasSuffix(v, "f") && tok.value != "-inf" && tok.value != "inf" {
v = v[:len(v)-1]
}
if f, err := strconv.ParseFloat(v, fv.Type().Bits()); err == nil {
fv.SetFloat(f)
return nil
}
case reflect.Int32:
if x, err := strconv.ParseInt(tok.value, 0, 32); err == nil {
fv.SetInt(x)
return nil
}
if len(props.Enum) == 0 {
break
}
m, ok := enumValueMaps[props.Enum]
if !ok {
break
}
x, ok := m[tok.value]
if !ok {
break
}
fv.SetInt(int64(x))
return nil
case reflect.Int64:
if x, err := strconv.ParseInt(tok.value, 0, 64); err == nil {
fv.SetInt(x)
return nil
}
case reflect.Ptr:
// A basic field (indirected through pointer), or a repeated message/group
p.back()
fv.Set(reflect.New(fv.Type().Elem()))
return p.readAny(fv.Elem(), props)
case reflect.String:
if tok.value[0] == '"' || tok.value[0] == '\'' {
fv.SetString(tok.unquoted)
return nil
}
case reflect.Struct:
var terminator string
switch tok.value {
case "{":
terminator = "}"
case "<":
terminator = ">"
default:
return p.errorf("expected '{' or '<', found %q", tok.value)
}
// TODO: Handle nested messages which implement encoding.TextUnmarshaler.
return p.readStruct(fv, terminator)
case reflect.Uint32:
if x, err := strconv.ParseUint(tok.value, 0, 32); err == nil {
fv.SetUint(uint64(x))
return nil
}
case reflect.Uint64:
if x, err := strconv.ParseUint(tok.value, 0, 64); err == nil {
fv.SetUint(x)
return nil
}
}
return p.errorf("invalid %v: %v", v.Type(), tok.value)
}
// UnmarshalText reads a protocol buffer in Text format. UnmarshalText resets pb
// before starting to unmarshal, so any existing data in pb is always removed.
// If a required field is not set and no other error occurs,
// UnmarshalText returns *RequiredNotSetError.
func UnmarshalText(s string, pb Message) error {
if um, ok := pb.(encoding.TextUnmarshaler); ok {
err := um.UnmarshalText([]byte(s))
return err
}
pb.Reset()
v := reflect.ValueOf(pb)
if pe := newTextParser(s).readStruct(v.Elem(), ""); pe != nil {
return pe
}
return nil
}

View File

@ -0,0 +1,468 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto_test
import (
"math"
"reflect"
"testing"
. "./testdata"
. "code.google.com/p/goprotobuf/proto"
)
type UnmarshalTextTest struct {
in string
err string // if "", no error expected
out *MyMessage
}
func buildExtStructTest(text string) UnmarshalTextTest {
msg := &MyMessage{
Count: Int32(42),
}
SetExtension(msg, E_Ext_More, &Ext{
Data: String("Hello, world!"),
})
return UnmarshalTextTest{in: text, out: msg}
}
func buildExtDataTest(text string) UnmarshalTextTest {
msg := &MyMessage{
Count: Int32(42),
}
SetExtension(msg, E_Ext_Text, String("Hello, world!"))
SetExtension(msg, E_Ext_Number, Int32(1729))
return UnmarshalTextTest{in: text, out: msg}
}
func buildExtRepStringTest(text string) UnmarshalTextTest {
msg := &MyMessage{
Count: Int32(42),
}
if err := SetExtension(msg, E_Greeting, []string{"bula", "hola"}); err != nil {
panic(err)
}
return UnmarshalTextTest{in: text, out: msg}
}
var unMarshalTextTests = []UnmarshalTextTest{
// Basic
{
in: " count:42\n name:\"Dave\" ",
out: &MyMessage{
Count: Int32(42),
Name: String("Dave"),
},
},
// Empty quoted string
{
in: `count:42 name:""`,
out: &MyMessage{
Count: Int32(42),
Name: String(""),
},
},
// Quoted string concatenation
{
in: `count:42 name: "My name is "` + "\n" + `"elsewhere"`,
out: &MyMessage{
Count: Int32(42),
Name: String("My name is elsewhere"),
},
},
// Quoted string with escaped apostrophe
{
in: `count:42 name: "HOLIDAY - New Year\'s Day"`,
out: &MyMessage{
Count: Int32(42),
Name: String("HOLIDAY - New Year's Day"),
},
},
// Quoted string with single quote
{
in: `count:42 name: 'Roger "The Ramster" Ramjet'`,
out: &MyMessage{
Count: Int32(42),
Name: String(`Roger "The Ramster" Ramjet`),
},
},
// Quoted string with all the accepted special characters from the C++ test
{
in: `count:42 name: ` + "\"\\\"A string with \\' characters \\n and \\r newlines and \\t tabs and \\001 slashes \\\\ and multiple spaces\"",
out: &MyMessage{
Count: Int32(42),
Name: String("\"A string with ' characters \n and \r newlines and \t tabs and \001 slashes \\ and multiple spaces"),
},
},
// Quoted string with quoted backslash
{
in: `count:42 name: "\\'xyz"`,
out: &MyMessage{
Count: Int32(42),
Name: String(`\'xyz`),
},
},
// Quoted string with UTF-8 bytes.
{
in: "count:42 name: '\303\277\302\201\xAB'",
out: &MyMessage{
Count: Int32(42),
Name: String("\303\277\302\201\xAB"),
},
},
// Bad quoted string
{
in: `inner: < host: "\0" >` + "\n",
err: `line 1.15: invalid quoted string "\0"`,
},
// Number too large for int64
{
in: "count: 1 others { key: 123456789012345678901 }",
err: "line 1.23: invalid int64: 123456789012345678901",
},
// Number too large for int32
{
in: "count: 1234567890123",
err: "line 1.7: invalid int32: 1234567890123",
},
// Number in hexadecimal
{
in: "count: 0x2beef",
out: &MyMessage{
Count: Int32(0x2beef),
},
},
// Number in octal
{
in: "count: 024601",
out: &MyMessage{
Count: Int32(024601),
},
},
// Floating point number with "f" suffix
{
in: "count: 4 others:< weight: 17.0f >",
out: &MyMessage{
Count: Int32(4),
Others: []*OtherMessage{
{
Weight: Float32(17),
},
},
},
},
// Floating point positive infinity
{
in: "count: 4 bigfloat: inf",
out: &MyMessage{
Count: Int32(4),
Bigfloat: Float64(math.Inf(1)),
},
},
// Floating point negative infinity
{
in: "count: 4 bigfloat: -inf",
out: &MyMessage{
Count: Int32(4),
Bigfloat: Float64(math.Inf(-1)),
},
},
// Number too large for float32
{
in: "others:< weight: 12345678901234567890123456789012345678901234567890 >",
err: "line 1.17: invalid float32: 12345678901234567890123456789012345678901234567890",
},
// Number posing as a quoted string
{
in: `inner: < host: 12 >` + "\n",
err: `line 1.15: invalid string: 12`,
},
// Quoted string posing as int32
{
in: `count: "12"`,
err: `line 1.7: invalid int32: "12"`,
},
// Quoted string posing a float32
{
in: `others:< weight: "17.4" >`,
err: `line 1.17: invalid float32: "17.4"`,
},
// Enum
{
in: `count:42 bikeshed: BLUE`,
out: &MyMessage{
Count: Int32(42),
Bikeshed: MyMessage_BLUE.Enum(),
},
},
// Repeated field
{
in: `count:42 pet: "horsey" pet:"bunny"`,
out: &MyMessage{
Count: Int32(42),
Pet: []string{"horsey", "bunny"},
},
},
// Repeated message with/without colon and <>/{}
{
in: `count:42 others:{} others{} others:<> others:{}`,
out: &MyMessage{
Count: Int32(42),
Others: []*OtherMessage{
{},
{},
{},
{},
},
},
},
// Missing colon for inner message
{
in: `count:42 inner < host: "cauchy.syd" >`,
out: &MyMessage{
Count: Int32(42),
Inner: &InnerMessage{
Host: String("cauchy.syd"),
},
},
},
// Missing colon for string field
{
in: `name "Dave"`,
err: `line 1.5: expected ':', found "\"Dave\""`,
},
// Missing colon for int32 field
{
in: `count 42`,
err: `line 1.6: expected ':', found "42"`,
},
// Missing required field
{
in: `name: "Pawel"`,
err: `proto: required field "testdata.MyMessage.count" not set`,
out: &MyMessage{
Name: String("Pawel"),
},
},
// Repeated non-repeated field
{
in: `name: "Rob" name: "Russ"`,
err: `line 1.12: non-repeated field "name" was repeated`,
},
// Group
{
in: `count: 17 SomeGroup { group_field: 12 }`,
out: &MyMessage{
Count: Int32(17),
Somegroup: &MyMessage_SomeGroup{
GroupField: Int32(12),
},
},
},
// Semicolon between fields
{
in: `count:3;name:"Calvin"`,
out: &MyMessage{
Count: Int32(3),
Name: String("Calvin"),
},
},
// Comma between fields
{
in: `count:4,name:"Ezekiel"`,
out: &MyMessage{
Count: Int32(4),
Name: String("Ezekiel"),
},
},
// Extension
buildExtStructTest(`count: 42 [testdata.Ext.more]:<data:"Hello, world!" >`),
buildExtStructTest(`count: 42 [testdata.Ext.more] {data:"Hello, world!"}`),
buildExtDataTest(`count: 42 [testdata.Ext.text]:"Hello, world!" [testdata.Ext.number]:1729`),
buildExtRepStringTest(`count: 42 [testdata.greeting]:"bula" [testdata.greeting]:"hola"`),
// Big all-in-one
{
in: "count:42 # Meaning\n" +
`name:"Dave" ` +
`quote:"\"I didn't want to go.\"" ` +
`pet:"bunny" ` +
`pet:"kitty" ` +
`pet:"horsey" ` +
`inner:<` +
` host:"footrest.syd" ` +
` port:7001 ` +
` connected:true ` +
`> ` +
`others:<` +
` key:3735928559 ` +
` value:"\x01A\a\f" ` +
`> ` +
`others:<` +
" weight:58.9 # Atomic weight of Co\n" +
` inner:<` +
` host:"lesha.mtv" ` +
` port:8002 ` +
` >` +
`>`,
out: &MyMessage{
Count: Int32(42),
Name: String("Dave"),
Quote: String(`"I didn't want to go."`),
Pet: []string{"bunny", "kitty", "horsey"},
Inner: &InnerMessage{
Host: String("footrest.syd"),
Port: Int32(7001),
Connected: Bool(true),
},
Others: []*OtherMessage{
{
Key: Int64(3735928559),
Value: []byte{0x1, 'A', '\a', '\f'},
},
{
Weight: Float32(58.9),
Inner: &InnerMessage{
Host: String("lesha.mtv"),
Port: Int32(8002),
},
},
},
},
},
}
func TestUnmarshalText(t *testing.T) {
for i, test := range unMarshalTextTests {
pb := new(MyMessage)
err := UnmarshalText(test.in, pb)
if test.err == "" {
// We don't expect failure.
if err != nil {
t.Errorf("Test %d: Unexpected error: %v", i, err)
} else if !reflect.DeepEqual(pb, test.out) {
t.Errorf("Test %d: Incorrect populated \nHave: %v\nWant: %v",
i, pb, test.out)
}
} else {
// We do expect failure.
if err == nil {
t.Errorf("Test %d: Didn't get expected error: %v", i, test.err)
} else if err.Error() != test.err {
t.Errorf("Test %d: Incorrect error.\nHave: %v\nWant: %v",
i, err.Error(), test.err)
} else if _, ok := err.(*RequiredNotSetError); ok && test.out != nil && !reflect.DeepEqual(pb, test.out) {
t.Errorf("Test %d: Incorrect populated \nHave: %v\nWant: %v",
i, pb, test.out)
}
}
}
}
func TestUnmarshalTextCustomMessage(t *testing.T) {
msg := &textMessage{}
if err := UnmarshalText("custom", msg); err != nil {
t.Errorf("Unexpected error from custom unmarshal: %v", err)
}
if UnmarshalText("not custom", msg) == nil {
t.Errorf("Didn't get expected error from custom unmarshal")
}
}
// Regression test; this caused a panic.
func TestRepeatedEnum(t *testing.T) {
pb := new(RepeatedEnum)
if err := UnmarshalText("color: RED", pb); err != nil {
t.Fatal(err)
}
exp := &RepeatedEnum{
Color: []RepeatedEnum_Color{RepeatedEnum_RED},
}
if !Equal(pb, exp) {
t.Errorf("Incorrect populated \nHave: %v\nWant: %v", pb, exp)
}
}
var benchInput string
func init() {
benchInput = "count: 4\n"
for i := 0; i < 1000; i++ {
benchInput += "pet: \"fido\"\n"
}
// Check it is valid input.
pb := new(MyMessage)
err := UnmarshalText(benchInput, pb)
if err != nil {
panic("Bad benchmark input: " + err.Error())
}
}
func BenchmarkUnmarshalText(b *testing.B) {
pb := new(MyMessage)
for i := 0; i < b.N; i++ {
UnmarshalText(benchInput, pb)
}
b.SetBytes(int64(len(benchInput)))
}

View File

@ -0,0 +1,408 @@
// Go support for Protocol Buffers - Google's data interchange format
//
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package proto_test
import (
"bytes"
"errors"
"io/ioutil"
"math"
"strings"
"testing"
"code.google.com/p/goprotobuf/proto"
pb "./testdata"
)
// textMessage implements the methods that allow it to marshal and unmarshal
// itself as text.
type textMessage struct {
}
func (*textMessage) MarshalText() ([]byte, error) {
return []byte("custom"), nil
}
func (*textMessage) UnmarshalText(bytes []byte) error {
if string(bytes) != "custom" {
return errors.New("expected 'custom'")
}
return nil
}
func (*textMessage) Reset() {}
func (*textMessage) String() string { return "" }
func (*textMessage) ProtoMessage() {}
func newTestMessage() *pb.MyMessage {
msg := &pb.MyMessage{
Count: proto.Int32(42),
Name: proto.String("Dave"),
Quote: proto.String(`"I didn't want to go."`),
Pet: []string{"bunny", "kitty", "horsey"},
Inner: &pb.InnerMessage{
Host: proto.String("footrest.syd"),
Port: proto.Int32(7001),
Connected: proto.Bool(true),
},
Others: []*pb.OtherMessage{
{
Key: proto.Int64(0xdeadbeef),
Value: []byte{1, 65, 7, 12},
},
{
Weight: proto.Float32(6.022),
Inner: &pb.InnerMessage{
Host: proto.String("lesha.mtv"),
Port: proto.Int32(8002),
},
},
},
Bikeshed: pb.MyMessage_BLUE.Enum(),
Somegroup: &pb.MyMessage_SomeGroup{
GroupField: proto.Int32(8),
},
// One normally wouldn't do this.
// This is an undeclared tag 13, as a varint (wire type 0) with value 4.
XXX_unrecognized: []byte{13<<3 | 0, 4},
}
ext := &pb.Ext{
Data: proto.String("Big gobs for big rats"),
}
if err := proto.SetExtension(msg, pb.E_Ext_More, ext); err != nil {
panic(err)
}
greetings := []string{"adg", "easy", "cow"}
if err := proto.SetExtension(msg, pb.E_Greeting, greetings); err != nil {
panic(err)
}
// Add an unknown extension. We marshal a pb.Ext, and fake the ID.
b, err := proto.Marshal(&pb.Ext{Data: proto.String("3G skiing")})
if err != nil {
panic(err)
}
b = append(proto.EncodeVarint(201<<3|proto.WireBytes), b...)
proto.SetRawExtension(msg, 201, b)
// Extensions can be plain fields, too, so let's test that.
b = append(proto.EncodeVarint(202<<3|proto.WireVarint), 19)
proto.SetRawExtension(msg, 202, b)
return msg
}
const text = `count: 42
name: "Dave"
quote: "\"I didn't want to go.\""
pet: "bunny"
pet: "kitty"
pet: "horsey"
inner: <
host: "footrest.syd"
port: 7001
connected: true
>
others: <
key: 3735928559
value: "\001A\007\014"
>
others: <
weight: 6.022
inner: <
host: "lesha.mtv"
port: 8002
>
>
bikeshed: BLUE
SomeGroup {
group_field: 8
}
/* 2 unknown bytes */
13: 4
[testdata.Ext.more]: <
data: "Big gobs for big rats"
>
[testdata.greeting]: "adg"
[testdata.greeting]: "easy"
[testdata.greeting]: "cow"
/* 13 unknown bytes */
201: "\t3G skiing"
/* 3 unknown bytes */
202: 19
`
func TestMarshalText(t *testing.T) {
buf := new(bytes.Buffer)
if err := proto.MarshalText(buf, newTestMessage()); err != nil {
t.Fatalf("proto.MarshalText: %v", err)
}
s := buf.String()
if s != text {
t.Errorf("Got:\n===\n%v===\nExpected:\n===\n%v===\n", s, text)
}
}
func TestMarshalTextCustomMessage(t *testing.T) {
buf := new(bytes.Buffer)
if err := proto.MarshalText(buf, &textMessage{}); err != nil {
t.Fatalf("proto.MarshalText: %v", err)
}
s := buf.String()
if s != "custom" {
t.Errorf("Got %q, expected %q", s, "custom")
}
}
func TestMarshalTextNil(t *testing.T) {
want := "<nil>"
tests := []proto.Message{nil, (*pb.MyMessage)(nil)}
for i, test := range tests {
buf := new(bytes.Buffer)
if err := proto.MarshalText(buf, test); err != nil {
t.Fatal(err)
}
if got := buf.String(); got != want {
t.Errorf("%d: got %q want %q", i, got, want)
}
}
}
func TestMarshalTextUnknownEnum(t *testing.T) {
// The Color enum only specifies values 0-2.
m := &pb.MyMessage{Bikeshed: pb.MyMessage_Color(3).Enum()}
got := m.String()
const want = `bikeshed:3 `
if got != want {
t.Errorf("\n got %q\nwant %q", got, want)
}
}
func BenchmarkMarshalTextBuffered(b *testing.B) {
buf := new(bytes.Buffer)
m := newTestMessage()
for i := 0; i < b.N; i++ {
buf.Reset()
proto.MarshalText(buf, m)
}
}
func BenchmarkMarshalTextUnbuffered(b *testing.B) {
w := ioutil.Discard
m := newTestMessage()
for i := 0; i < b.N; i++ {
proto.MarshalText(w, m)
}
}
func compact(src string) string {
// s/[ \n]+/ /g; s/ $//;
dst := make([]byte, len(src))
space, comment := false, false
j := 0
for i := 0; i < len(src); i++ {
if strings.HasPrefix(src[i:], "/*") {
comment = true
i++
continue
}
if comment && strings.HasPrefix(src[i:], "*/") {
comment = false
i++
continue
}
if comment {
continue
}
c := src[i]
if c == ' ' || c == '\n' {
space = true
continue
}
if j > 0 && (dst[j-1] == ':' || dst[j-1] == '<' || dst[j-1] == '{') {
space = false
}
if c == '{' {
space = false
}
if space {
dst[j] = ' '
j++
space = false
}
dst[j] = c
j++
}
if space {
dst[j] = ' '
j++
}
return string(dst[0:j])
}
var compactText = compact(text)
func TestCompactText(t *testing.T) {
s := proto.CompactTextString(newTestMessage())
if s != compactText {
t.Errorf("Got:\n===\n%v===\nExpected:\n===\n%v\n===\n", s, compactText)
}
}
func TestStringEscaping(t *testing.T) {
testCases := []struct {
in *pb.Strings
out string
}{
{
// Test data from C++ test (TextFormatTest.StringEscape).
// Single divergence: we don't escape apostrophes.
&pb.Strings{StringField: proto.String("\"A string with ' characters \n and \r newlines and \t tabs and \001 slashes \\ and multiple spaces")},
"string_field: \"\\\"A string with ' characters \\n and \\r newlines and \\t tabs and \\001 slashes \\\\ and multiple spaces\"\n",
},
{
// Test data from the same C++ test.
&pb.Strings{StringField: proto.String("\350\260\267\346\255\214")},
"string_field: \"\\350\\260\\267\\346\\255\\214\"\n",
},
{
// Some UTF-8.
&pb.Strings{StringField: proto.String("\x00\x01\xff\x81")},
`string_field: "\000\001\377\201"` + "\n",
},
}
for i, tc := range testCases {
var buf bytes.Buffer
if err := proto.MarshalText(&buf, tc.in); err != nil {
t.Errorf("proto.MarsalText: %v", err)
continue
}
s := buf.String()
if s != tc.out {
t.Errorf("#%d: Got:\n%s\nExpected:\n%s\n", i, s, tc.out)
continue
}
// Check round-trip.
pb := new(pb.Strings)
if err := proto.UnmarshalText(s, pb); err != nil {
t.Errorf("#%d: UnmarshalText: %v", i, err)
continue
}
if !proto.Equal(pb, tc.in) {
t.Errorf("#%d: Round-trip failed:\nstart: %v\n end: %v", i, tc.in, pb)
}
}
}
// A limitedWriter accepts some output before it fails.
// This is a proxy for something like a nearly-full or imminently-failing disk,
// or a network connection that is about to die.
type limitedWriter struct {
b bytes.Buffer
limit int
}
var outOfSpace = errors.New("proto: insufficient space")
func (w *limitedWriter) Write(p []byte) (n int, err error) {
var avail = w.limit - w.b.Len()
if avail <= 0 {
return 0, outOfSpace
}
if len(p) <= avail {
return w.b.Write(p)
}
n, _ = w.b.Write(p[:avail])
return n, outOfSpace
}
func TestMarshalTextFailing(t *testing.T) {
// Try lots of different sizes to exercise more error code-paths.
for lim := 0; lim < len(text); lim++ {
buf := new(limitedWriter)
buf.limit = lim
err := proto.MarshalText(buf, newTestMessage())
// We expect a certain error, but also some partial results in the buffer.
if err != outOfSpace {
t.Errorf("Got:\n===\n%v===\nExpected:\n===\n%v===\n", err, outOfSpace)
}
s := buf.b.String()
x := text[:buf.limit]
if s != x {
t.Errorf("Got:\n===\n%v===\nExpected:\n===\n%v===\n", s, x)
}
}
}
func TestFloats(t *testing.T) {
tests := []struct {
f float64
want string
}{
{0, "0"},
{4.7, "4.7"},
{math.Inf(1), "inf"},
{math.Inf(-1), "-inf"},
{math.NaN(), "nan"},
}
for _, test := range tests {
msg := &pb.FloatingPoint{F: &test.f}
got := strings.TrimSpace(msg.String())
want := `f:` + test.want
if got != want {
t.Errorf("f=%f: got %q, want %q", test.f, got, want)
}
}
}
func TestRepeatedNilText(t *testing.T) {
m := &pb.MessageList{
Message: []*pb.MessageList_Message{
nil,
&pb.MessageList_Message{
Name: proto.String("Horse"),
},
nil,
},
}
want := `Message <nil>
Message {
name: "Horse"
}
Message <nil>
`
if s := proto.MarshalTextString(m); s != want {
t.Errorf(" got: %s\nwant: %s", s, want)
}
}

View File

@ -0,0 +1,355 @@
// Copyright 2013 Matt T. Proud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ext
import (
"bytes"
"math/rand"
"reflect"
"testing"
"testing/quick"
. "code.google.com/p/goprotobuf/proto"
. "code.google.com/p/goprotobuf/proto/testdata"
)
func TestWriteDelimited(t *testing.T) {
for _, test := range []struct {
msg Message
buf []byte
n int
err error
}{
{
msg: &Empty{},
n: 1,
buf: []byte{0},
},
{
msg: &GoEnum{Foo: FOO_FOO1.Enum()},
n: 3,
buf: []byte{2, 8, 1},
},
{
msg: &Strings{
StringField: String(`This is my gigantic, unhappy string. It exceeds
the encoding size of a single byte varint. We are using it to fuzz test the
correctness of the header decoding mechanisms, which may prove problematic.
I expect it may. Let's hope you enjoy testing as much as we do.`),
},
n: 271,
buf: []byte{141, 2, 10, 138, 2, 84, 104, 105, 115, 32, 105, 115, 32, 109,
121, 32, 103, 105, 103, 97, 110, 116, 105, 99, 44, 32, 117, 110, 104,
97, 112, 112, 121, 32, 115, 116, 114, 105, 110, 103, 46, 32, 32, 73,
116, 32, 101, 120, 99, 101, 101, 100, 115, 10, 116, 104, 101, 32, 101,
110, 99, 111, 100, 105, 110, 103, 32, 115, 105, 122, 101, 32, 111, 102,
32, 97, 32, 115, 105, 110, 103, 108, 101, 32, 98, 121, 116, 101, 32,
118, 97, 114, 105, 110, 116, 46, 32, 32, 87, 101, 32, 97, 114, 101, 32,
117, 115, 105, 110, 103, 32, 105, 116, 32, 116, 111, 32, 102, 117, 122,
122, 32, 116, 101, 115, 116, 32, 116, 104, 101, 10, 99, 111, 114, 114,
101, 99, 116, 110, 101, 115, 115, 32, 111, 102, 32, 116, 104, 101, 32,
104, 101, 97, 100, 101, 114, 32, 100, 101, 99, 111, 100, 105, 110, 103,
32, 109, 101, 99, 104, 97, 110, 105, 115, 109, 115, 44, 32, 119, 104,
105, 99, 104, 32, 109, 97, 121, 32, 112, 114, 111, 118, 101, 32, 112,
114, 111, 98, 108, 101, 109, 97, 116, 105, 99, 46, 10, 73, 32, 101, 120,
112, 101, 99, 116, 32, 105, 116, 32, 109, 97, 121, 46, 32, 32, 76, 101,
116, 39, 115, 32, 104, 111, 112, 101, 32, 121, 111, 117, 32, 101, 110,
106, 111, 121, 32, 116, 101, 115, 116, 105, 110, 103, 32, 97, 115, 32,
109, 117, 99, 104, 32, 97, 115, 32, 119, 101, 32, 100, 111, 46},
},
} {
var buf bytes.Buffer
if n, err := WriteDelimited(&buf, test.msg); n != test.n || err != test.err {
t.Fatalf("WriteDelimited(buf, %#v) = %v, %v; want %v, %v", test.msg, n, err, test.n, test.err)
}
if out := buf.Bytes(); !bytes.Equal(out, test.buf) {
t.Fatalf("WriteDelimited(buf, %#v); buf = %v; want %v", test.msg, out, test.buf)
}
}
}
func TestReadDelimited(t *testing.T) {
for _, test := range []struct {
buf []byte
msg Message
n int
err error
}{
{
buf: []byte{0},
msg: &Empty{},
n: 1,
},
{
n: 3,
buf: []byte{2, 8, 1},
msg: &GoEnum{Foo: FOO_FOO1.Enum()},
},
{
buf: []byte{141, 2, 10, 138, 2, 84, 104, 105, 115, 32, 105, 115, 32, 109,
121, 32, 103, 105, 103, 97, 110, 116, 105, 99, 44, 32, 117, 110, 104,
97, 112, 112, 121, 32, 115, 116, 114, 105, 110, 103, 46, 32, 32, 73,
116, 32, 101, 120, 99, 101, 101, 100, 115, 10, 116, 104, 101, 32, 101,
110, 99, 111, 100, 105, 110, 103, 32, 115, 105, 122, 101, 32, 111, 102,
32, 97, 32, 115, 105, 110, 103, 108, 101, 32, 98, 121, 116, 101, 32,
118, 97, 114, 105, 110, 116, 46, 32, 32, 87, 101, 32, 97, 114, 101, 32,
117, 115, 105, 110, 103, 32, 105, 116, 32, 116, 111, 32, 102, 117, 122,
122, 32, 116, 101, 115, 116, 32, 116, 104, 101, 10, 99, 111, 114, 114,
101, 99, 116, 110, 101, 115, 115, 32, 111, 102, 32, 116, 104, 101, 32,
104, 101, 97, 100, 101, 114, 32, 100, 101, 99, 111, 100, 105, 110, 103,
32, 109, 101, 99, 104, 97, 110, 105, 115, 109, 115, 44, 32, 119, 104,
105, 99, 104, 32, 109, 97, 121, 32, 112, 114, 111, 118, 101, 32, 112,
114, 111, 98, 108, 101, 109, 97, 116, 105, 99, 46, 10, 73, 32, 101, 120,
112, 101, 99, 116, 32, 105, 116, 32, 109, 97, 121, 46, 32, 32, 76, 101,
116, 39, 115, 32, 104, 111, 112, 101, 32, 121, 111, 117, 32, 101, 110,
106, 111, 121, 32, 116, 101, 115, 116, 105, 110, 103, 32, 97, 115, 32,
109, 117, 99, 104, 32, 97, 115, 32, 119, 101, 32, 100, 111, 46},
msg: &Strings{
StringField: String(`This is my gigantic, unhappy string. It exceeds
the encoding size of a single byte varint. We are using it to fuzz test the
correctness of the header decoding mechanisms, which may prove problematic.
I expect it may. Let's hope you enjoy testing as much as we do.`),
},
n: 271,
},
} {
msg := Clone(test.msg)
msg.Reset()
if n, err := ReadDelimited(bytes.NewBuffer(test.buf), msg); n != test.n || err != test.err {
t.Fatalf("ReadDelimited(%v, msg) = %v, %v; want %v, %v", test.buf, n, err, test.n, test.err)
}
if !Equal(msg, test.msg) {
t.Fatalf("ReadDelimited(%v, msg); msg = %v; want %v", test.buf, msg, test.msg)
}
}
}
func TestEndToEndValid(t *testing.T) {
for _, test := range [][]Message{
[]Message{&Empty{}},
[]Message{&GoEnum{Foo: FOO_FOO1.Enum()}, &Empty{}, &GoEnum{Foo: FOO_FOO1.Enum()}},
[]Message{&GoEnum{Foo: FOO_FOO1.Enum()}},
[]Message{&Strings{
StringField: String(`This is my gigantic, unhappy string. It exceeds
the encoding size of a single byte varint. We are using it to fuzz test the
correctness of the header decoding mechanisms, which may prove problematic.
I expect it may. Let's hope you enjoy testing as much as we do.`),
}},
} {
var buf bytes.Buffer
var written int
for i, msg := range test {
n, err := WriteDelimited(&buf, msg)
if err != nil {
// Assumption: TestReadDelimited and TestWriteDelimited are sufficient
// and inputs for this test are explicitly exercised there.
t.Fatalf("WriteDelimited(buf, %v[%d]) = ?, %v; wanted ?, nil", test, i, err)
}
written += n
}
var read int
for i, msg := range test {
out := Clone(msg)
out.Reset()
n, _ := ReadDelimited(&buf, out)
// Decide to do EOF checking?
read += n
if !Equal(out, msg) {
t.Fatalf("out = %v; want %v[%d] = %#v", out, test, i, msg)
}
}
if read != written {
t.Fatalf("%v read = %d; want %d", test, read, written)
}
}
}
// visitMessage empties the private state fields of the quick.Value()-generated
// Protocol Buffer messages, for they cause an inordinate amount of problems.
// This is because we are using an automated fuzz generator on a type with
// private fields.
func visitMessage(m Message) {
t := reflect.TypeOf(m)
if t.Kind() != reflect.Ptr {
return
}
derefed := t.Elem()
if derefed.Kind() != reflect.Struct {
return
}
v := reflect.ValueOf(m)
elem := v.Elem()
for i := 0; i < elem.NumField(); i++ {
field := elem.FieldByIndex([]int{i})
fieldType := field.Type()
if fieldType.Implements(reflect.TypeOf((*Message)(nil)).Elem()) {
visitMessage(field.Interface().(Message))
}
if field.Kind() == reflect.Slice {
for i := 0; i < field.Len(); i++ {
elem := field.Index(i)
elemType := elem.Type()
if elemType.Implements(reflect.TypeOf((*Message)(nil)).Elem()) {
visitMessage(elem.Interface().(Message))
}
}
}
}
if field := elem.FieldByName("XXX_unrecognized"); field.IsValid() {
field.Set(reflect.ValueOf([]byte{}))
}
if field := elem.FieldByName("XXX_extensions"); field.IsValid() {
field.Set(reflect.ValueOf(nil))
}
}
// rndMessage generates a random valid Protocol Buffer message.
func rndMessage(r *rand.Rand) Message {
var t reflect.Type
switch v := rand.Intn(23); v {
// TODO(br): Uncomment the elements below once fix is incorporated, except
// for the elements marked as patently incompatible.
// case 0:
// t = reflect.TypeOf(&GoEnum{})
// break
// case 1:
// t = reflect.TypeOf(&GoTestField{})
// break
case 2:
t = reflect.TypeOf(&GoTest{})
break
// case 3:
// t = reflect.TypeOf(&GoSkipTest{})
// break
// case 4:
// t = reflect.TypeOf(&NonPackedTest{})
// break
// case 5:
// t = reflect.TypeOf(&PackedTest{})
// break
case 6:
t = reflect.TypeOf(&MaxTag{})
break
case 7:
t = reflect.TypeOf(&OldMessage{})
break
case 8:
t = reflect.TypeOf(&NewMessage{})
break
case 9:
t = reflect.TypeOf(&InnerMessage{})
break
case 10:
t = reflect.TypeOf(&OtherMessage{})
break
case 11:
// PATENTLY INVALID FOR FUZZ GENERATION
// t = reflect.TypeOf(&MyMessage{})
break
// case 12:
// t = reflect.TypeOf(&Ext{})
// break
case 13:
// PATENTLY INVALID FOR FUZZ GENERATION
// t = reflect.TypeOf(&MyMessageSet{})
break
// case 14:
// t = reflect.TypeOf(&Empty{})
// break
// case 15:
// t = reflect.TypeOf(&MessageList{})
// break
// case 16:
// t = reflect.TypeOf(&Strings{})
// break
// case 17:
// t = reflect.TypeOf(&Defaults{})
// break
// case 17:
// t = reflect.TypeOf(&SubDefaults{})
// break
// case 18:
// t = reflect.TypeOf(&RepeatedEnum{})
// break
case 19:
t = reflect.TypeOf(&MoreRepeated{})
break
// case 20:
// t = reflect.TypeOf(&GroupOld{})
// break
// case 21:
// t = reflect.TypeOf(&GroupNew{})
// break
case 22:
t = reflect.TypeOf(&FloatingPoint{})
break
default:
// TODO(br): Replace with an unreachable once fixed.
t = reflect.TypeOf(&GoTest{})
break
}
if t == nil {
t = reflect.TypeOf(&GoTest{})
}
v, ok := quick.Value(t, r)
if !ok {
panic("attempt to generate illegal item; consult item 11")
}
visitMessage(v.Interface().(Message))
return v.Interface().(Message)
}
// rndMessages generates several random Protocol Buffer messages.
func rndMessages(r *rand.Rand) []Message {
n := r.Intn(128)
out := make([]Message, 0, n)
for i := 0; i < n; i++ {
out = append(out, rndMessage(r))
}
return out
}
func TestFuzz(t *testing.T) {
rnd := rand.New(rand.NewSource(42))
check := func() bool {
messages := rndMessages(rnd)
var buf bytes.Buffer
var written int
for i, msg := range messages {
n, err := WriteDelimited(&buf, msg)
if err != nil {
t.Fatalf("WriteDelimited(buf, %v[%d]) = ?, %v; wanted ?, nil", messages, i, err)
}
written += n
}
var read int
for i, msg := range messages {
out := Clone(msg)
out.Reset()
n, _ := ReadDelimited(&buf, out)
read += n
if !Equal(out, msg) {
t.Fatalf("out = %v; want %v[%d] = %#v", out, messages, i, msg)
}
}
if read != written {
t.Fatalf("%v read = %d; want %d", messages, read, written)
}
return true
}
if err := quick.Check(check, nil); err != nil {
t.Fatal(err)
}
}

View File

@ -0,0 +1,75 @@
// Copyright 2013 Matt T. Proud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ext
import (
"encoding/binary"
"errors"
"io"
"code.google.com/p/goprotobuf/proto"
)
var errInvalidVarint = errors.New("invalid varint32 encountered")
// ReadDelimited decodes a message from the provided length-delimited stream,
// where the length is encoded as 32-bit varint prefix to the message body.
// It returns the total number of bytes read and any applicable error. This is
// roughly equivalent to the companion Java API's
// MessageLite#parseDelimitedFrom. As per the reader contract, this function
// calls r.Read repeatedly as required until exactly one message including its
// prefix is read and decoded (or an error has occurred). The function never
// reads more bytes from the stream than required. The function never returns
// an error if a message has been read and decoded correctly, even if the end
// of the stream has been reached in doing so. In that case, any subsequent
// calls return (0, io.EOF).
func ReadDelimited(r io.Reader, m proto.Message) (n int, err error) {
// Per AbstractParser#parsePartialDelimitedFrom with
// CodedInputStream#readRawVarint32.
headerBuf := make([]byte, binary.MaxVarintLen32)
var bytesRead, varIntBytes int
var messageLength uint64
for varIntBytes == 0 { // i.e. no varint has been decoded yet.
if bytesRead >= len(headerBuf) {
return bytesRead, errInvalidVarint
}
// We have to read byte by byte here to avoid reading more bytes
// than required. Each read byte is appended to what we have
// read before.
newBytesRead, err := r.Read(headerBuf[bytesRead : bytesRead+1])
if newBytesRead == 0 {
if err != nil {
return bytesRead, err
}
// A Reader should not return (0, nil), but if it does,
// it should be treated as no-op (according to the
// Reader contract). So let's go on...
continue
}
bytesRead += newBytesRead
// Now present everything read so far to the varint decoder and
// see if a varint can be decoded already.
messageLength, varIntBytes = proto.DecodeVarint(headerBuf[:bytesRead])
}
messageBuf := make([]byte, messageLength)
newBytesRead, err := io.ReadFull(r, messageBuf)
bytesRead += newBytesRead
if err != nil {
return bytesRead, err
}
return bytesRead, proto.Unmarshal(messageBuf, m)
}

View File

@ -0,0 +1,16 @@
// Copyright 2013 Matt T. Proud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package ext enables record length-delimited Protocol Buffer streaming.
package ext

View File

@ -0,0 +1,46 @@
// Copyright 2013 Matt T. Proud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ext
import (
"encoding/binary"
"io"
"code.google.com/p/goprotobuf/proto"
)
// WriteDelimited encodes and dumps a message to the provided writer prefixed
// with a 32-bit varint indicating the length of the encoded message, producing
// a length-delimited record stream, which can be used to chain together
// encoded messages of the same type together in a file. It returns the total
// number of bytes written and any applicable error. This is roughly
// equivalent to the companion Java API's MessageLite#writeDelimitedTo.
func WriteDelimited(w io.Writer, m proto.Message) (n int, err error) {
buffer, err := proto.Marshal(m)
if err != nil {
return 0, err
}
buf := make([]byte, binary.MaxVarintLen32)
encodedLength := binary.PutUvarint(buf, uint64(len(buffer)))
sync, err := w.Write(buf[:encodedLength])
if err != nil {
return sync, err
}
n, err = w.Write(buffer)
return n + sync, err
}

View File

@ -0,0 +1,103 @@
// Copyright 2010 The Go Authors. All rights reserved.
// http://code.google.com/p/goprotobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package ext
import (
. "code.google.com/p/goprotobuf/proto"
. "code.google.com/p/goprotobuf/proto/testdata"
)
// FROM https://code.google.com/p/goprotobuf/source/browse/proto/all_test.go.
func initGoTestField() *GoTestField {
f := new(GoTestField)
f.Label = String("label")
f.Type = String("type")
return f
}
// These are all structurally equivalent but the tag numbers differ.
// (It's remarkable that required, optional, and repeated all have
// 8 letters.)
func initGoTest_RequiredGroup() *GoTest_RequiredGroup {
return &GoTest_RequiredGroup{
RequiredField: String("required"),
}
}
func initGoTest_OptionalGroup() *GoTest_OptionalGroup {
return &GoTest_OptionalGroup{
RequiredField: String("optional"),
}
}
func initGoTest_RepeatedGroup() *GoTest_RepeatedGroup {
return &GoTest_RepeatedGroup{
RequiredField: String("repeated"),
}
}
func initGoTest(setdefaults bool) *GoTest {
pb := new(GoTest)
if setdefaults {
pb.F_BoolDefaulted = Bool(Default_GoTest_F_BoolDefaulted)
pb.F_Int32Defaulted = Int32(Default_GoTest_F_Int32Defaulted)
pb.F_Int64Defaulted = Int64(Default_GoTest_F_Int64Defaulted)
pb.F_Fixed32Defaulted = Uint32(Default_GoTest_F_Fixed32Defaulted)
pb.F_Fixed64Defaulted = Uint64(Default_GoTest_F_Fixed64Defaulted)
pb.F_Uint32Defaulted = Uint32(Default_GoTest_F_Uint32Defaulted)
pb.F_Uint64Defaulted = Uint64(Default_GoTest_F_Uint64Defaulted)
pb.F_FloatDefaulted = Float32(Default_GoTest_F_FloatDefaulted)
pb.F_DoubleDefaulted = Float64(Default_GoTest_F_DoubleDefaulted)
pb.F_StringDefaulted = String(Default_GoTest_F_StringDefaulted)
pb.F_BytesDefaulted = Default_GoTest_F_BytesDefaulted
pb.F_Sint32Defaulted = Int32(Default_GoTest_F_Sint32Defaulted)
pb.F_Sint64Defaulted = Int64(Default_GoTest_F_Sint64Defaulted)
}
pb.Kind = GoTest_TIME.Enum()
pb.RequiredField = initGoTestField()
pb.F_BoolRequired = Bool(true)
pb.F_Int32Required = Int32(3)
pb.F_Int64Required = Int64(6)
pb.F_Fixed32Required = Uint32(32)
pb.F_Fixed64Required = Uint64(64)
pb.F_Uint32Required = Uint32(3232)
pb.F_Uint64Required = Uint64(6464)
pb.F_FloatRequired = Float32(3232)
pb.F_DoubleRequired = Float64(6464)
pb.F_StringRequired = String("string")
pb.F_BytesRequired = []byte("bytes")
pb.F_Sint32Required = Int32(-32)
pb.F_Sint64Required = Int64(-64)
pb.Requiredgroup = initGoTest_RequiredGroup()
return pb
}

View File

@ -0,0 +1 @@
Imported at 75cd24fc2f2c from https://bitbucket.org/ww/goautoneg.

View File

@ -0,0 +1,13 @@
include $(GOROOT)/src/Make.inc
TARG=bitbucket.org/ww/goautoneg
GOFILES=autoneg.go
include $(GOROOT)/src/Make.pkg
format:
gofmt -w *.go
docs:
gomake clean
godoc ${TARG} > README.txt

View File

@ -0,0 +1,67 @@
PACKAGE
package goautoneg
import "bitbucket.org/ww/goautoneg"
HTTP Content-Type Autonegotiation.
The functions in this package implement the behaviour specified in
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
Copyright (c) 2011, Open Knowledge Foundation Ltd.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
Neither the name of the Open Knowledge Foundation Ltd. nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
FUNCTIONS
func Negotiate(header string, alternatives []string) (content_type string)
Negotiate the most appropriate content_type given the accept header
and a list of alternatives.
func ParseAccept(header string) (accept []Accept)
Parse an Accept Header string returning a sorted list
of clauses
TYPES
type Accept struct {
Type, SubType string
Q float32
Params map[string]string
}
Structure to represent a clause in an HTTP Accept Header
SUBDIRECTORIES
.hg

View File

@ -0,0 +1,162 @@
/*
HTTP Content-Type Autonegotiation.
The functions in this package implement the behaviour specified in
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
Copyright (c) 2011, Open Knowledge Foundation Ltd.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
Neither the name of the Open Knowledge Foundation Ltd. nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package goautoneg
import (
"sort"
"strconv"
"strings"
)
// Structure to represent a clause in an HTTP Accept Header
type Accept struct {
Type, SubType string
Q float64
Params map[string]string
}
// For internal use, so that we can use the sort interface
type accept_slice []Accept
func (accept accept_slice) Len() int {
slice := []Accept(accept)
return len(slice)
}
func (accept accept_slice) Less(i, j int) bool {
slice := []Accept(accept)
ai, aj := slice[i], slice[j]
if ai.Q > aj.Q {
return true
}
if ai.Type != "*" && aj.Type == "*" {
return true
}
if ai.SubType != "*" && aj.SubType == "*" {
return true
}
return false
}
func (accept accept_slice) Swap(i, j int) {
slice := []Accept(accept)
slice[i], slice[j] = slice[j], slice[i]
}
// Parse an Accept Header string returning a sorted list
// of clauses
func ParseAccept(header string) (accept []Accept) {
parts := strings.Split(header, ",")
accept = make([]Accept, 0, len(parts))
for _, part := range parts {
part := strings.Trim(part, " ")
a := Accept{}
a.Params = make(map[string]string)
a.Q = 1.0
mrp := strings.Split(part, ";")
media_range := mrp[0]
sp := strings.Split(media_range, "/")
a.Type = strings.Trim(sp[0], " ")
switch {
case len(sp) == 1 && a.Type == "*":
a.SubType = "*"
case len(sp) == 2:
a.SubType = strings.Trim(sp[1], " ")
default:
continue
}
if len(mrp) == 1 {
accept = append(accept, a)
continue
}
for _, param := range mrp[1:] {
sp := strings.SplitN(param, "=", 2)
if len(sp) != 2 {
continue
}
token := strings.Trim(sp[0], " ")
if token == "q" {
a.Q, _ = strconv.ParseFloat(sp[1], 32)
} else {
a.Params[token] = strings.Trim(sp[1], " ")
}
}
accept = append(accept, a)
}
slice := accept_slice(accept)
sort.Sort(slice)
return
}
// Negotiate the most appropriate content_type given the accept header
// and a list of alternatives.
func Negotiate(header string, alternatives []string) (content_type string) {
asp := make([][]string, 0, len(alternatives))
for _, ctype := range alternatives {
asp = append(asp, strings.SplitN(ctype, "/", 2))
}
for _, clause := range ParseAccept(header) {
for i, ctsp := range asp {
if clause.Type == ctsp[0] && clause.SubType == ctsp[1] {
content_type = alternatives[i]
return
}
if clause.Type == ctsp[0] && clause.SubType == "*" {
content_type = alternatives[i]
return
}
if clause.Type == "*" && clause.SubType == "*" {
content_type = alternatives[i]
return
}
}
}
return
}

View File

@ -0,0 +1,33 @@
package goautoneg
import (
"testing"
)
var chrome = "application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5"
func TestParseAccept(t *testing.T) {
alternatives := []string{"text/html", "image/png"}
content_type := Negotiate(chrome, alternatives)
if content_type != "image/png" {
t.Errorf("got %s expected image/png", content_type)
}
alternatives = []string{"text/html", "text/plain", "text/n3"}
content_type = Negotiate(chrome, alternatives)
if content_type != "text/html" {
t.Errorf("got %s expected text/html", content_type)
}
alternatives = []string{"text/n3", "text/plain"}
content_type = Negotiate(chrome, alternatives)
if content_type != "text/plain" {
t.Errorf("got %s expected text/plain", content_type)
}
alternatives = []string{"text/n3", "application/rdf+xml"}
content_type = Negotiate(chrome, alternatives)
if content_type != "text/n3" {
t.Errorf("got %s expected text/n3", content_type)
}
}

View File

@ -0,0 +1,63 @@
package quantile
import (
"testing"
)
func BenchmarkInsertTargeted(b *testing.B) {
b.ReportAllocs()
s := NewTargeted(Targets)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkInsertTargetedSmallEpsilon(b *testing.B) {
s := NewTargeted(TargetsSmallEpsilon)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkInsertBiased(b *testing.B) {
s := NewLowBiased(0.01)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkInsertBiasedSmallEpsilon(b *testing.B) {
s := NewLowBiased(0.0001)
b.ResetTimer()
for i := float64(0); i < float64(b.N); i++ {
s.Insert(i)
}
}
func BenchmarkQuery(b *testing.B) {
s := NewTargeted(Targets)
for i := float64(0); i < 1e6; i++ {
s.Insert(i)
}
b.ResetTimer()
n := float64(b.N)
for i := float64(0); i < n; i++ {
s.Query(i / n)
}
}
func BenchmarkQuerySmallEpsilon(b *testing.B) {
s := NewTargeted(TargetsSmallEpsilon)
for i := float64(0); i < 1e6; i++ {
s.Insert(i)
}
b.ResetTimer()
n := float64(b.N)
for i := float64(0); i < n; i++ {
s.Query(i / n)
}
}

View File

@ -0,0 +1,112 @@
// +build go1.1
package quantile_test
import (
"bufio"
"fmt"
"github.com/bmizerany/perks/quantile"
"log"
"os"
"strconv"
"time"
)
func Example_simple() {
ch := make(chan float64)
go sendFloats(ch)
// Compute the 50th, 90th, and 99th percentile.
q := quantile.NewTargeted(0.50, 0.90, 0.99)
for v := range ch {
q.Insert(v)
}
fmt.Println("perc50:", q.Query(0.50))
fmt.Println("perc90:", q.Query(0.90))
fmt.Println("perc99:", q.Query(0.99))
fmt.Println("count:", q.Count())
// Output:
// perc50: 5
// perc90: 14
// perc99: 40
// count: 2388
}
func Example_mergeMultipleStreams() {
// Scenario:
// We have multiple database shards. On each shard, there is a process
// collecting query response times from the database logs and inserting
// them into a Stream (created via NewTargeted(0.90)), much like the
// Simple example. These processes expose a network interface for us to
// ask them to serialize and send us the results of their
// Stream.Samples so we may Merge and Query them.
//
// NOTES:
// * These sample sets are small, allowing us to get them
// across the network much faster than sending the entire list of data
// points.
//
// * For this to work correctly, we must supply the same quantiles
// a priori the process collecting the samples supplied to NewTargeted,
// even if we do not plan to query them all here.
ch := make(chan quantile.Samples)
getDBQuerySamples(ch)
q := quantile.NewTargeted(0.90)
for samples := range ch {
q.Merge(samples)
}
fmt.Println("perc90:", q.Query(0.90))
}
func Example_window() {
// Scenario: We want the 90th, 95th, and 99th percentiles for each
// minute.
ch := make(chan float64)
go sendStreamValues(ch)
tick := time.NewTicker(1 * time.Minute)
q := quantile.NewTargeted(0.90, 0.95, 0.99)
for {
select {
case t := <-tick.C:
flushToDB(t, q.Samples())
q.Reset()
case v := <-ch:
q.Insert(v)
}
}
}
func sendStreamValues(ch chan float64) {
// Use your imagination
}
func flushToDB(t time.Time, samples quantile.Samples) {
// Use your imagination
}
// This is a stub for the above example. In reality this would hit the remote
// servers via http or something like it.
func getDBQuerySamples(ch chan quantile.Samples) {}
func sendFloats(ch chan<- float64) {
f, err := os.Open("exampledata.txt")
if err != nil {
log.Fatal(err)
}
sc := bufio.NewScanner(f)
for sc.Scan() {
b := sc.Bytes()
v, err := strconv.ParseFloat(string(b), 64)
if err != nil {
log.Fatal(err)
}
ch <- v
}
if sc.Err() != nil {
log.Fatal(sc.Err())
}
close(ch)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,292 @@
// Package quantile computes approximate quantiles over an unbounded data
// stream within low memory and CPU bounds.
//
// A small amount of accuracy is traded to achieve the above properties.
//
// Multiple streams can be merged before calling Query to generate a single set
// of results. This is meaningful when the streams represent the same type of
// data. See Merge and Samples.
//
// For more detailed information about the algorithm used, see:
//
// Effective Computation of Biased Quantiles over Data Streams
//
// http://www.cs.rutgers.edu/~muthu/bquant.pdf
package quantile
import (
"math"
"sort"
)
// Sample holds an observed value and meta information for compression. JSON
// tags have been added for convenience.
type Sample struct {
Value float64 `json:",string"`
Width float64 `json:",string"`
Delta float64 `json:",string"`
}
// Samples represents a slice of samples. It implements sort.Interface.
type Samples []Sample
func (a Samples) Len() int { return len(a) }
func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value }
func (a Samples) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type invariant func(s *stream, r float64) float64
// NewLowBiased returns an initialized Stream for low-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the lower ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within (1±Epsilon)*Quantile.
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewLowBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * r
}
return newStream(ƒ)
}
// NewHighBiased returns an initialized Stream for high-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the higher ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewHighBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * (s.n - r)
}
return newStream(ƒ)
}
// NewTargeted returns an initialized Stream concerned with a particular set of
// quantile values that are supplied a priori. Knowing these a priori reduces
// space and computation time. The targets map maps the desired quantiles to
// their absolute errors, i.e. the true quantile of a value returned by a query
// is guaranteed to be within (Quantile±Epsilon).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
func NewTargeted(targets map[float64]float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
var m = math.MaxFloat64
var f float64
for quantile, epsilon := range targets {
if quantile*s.n <= r {
f = (2 * epsilon * r) / quantile
} else {
f = (2 * epsilon * (s.n - r)) / (1 - quantile)
}
if f < m {
m = f
}
}
return m
}
return newStream(ƒ)
}
// Stream computes quantiles for a stream of float64s. It is not thread-safe by
// design. Take care when using across multiple goroutines.
type Stream struct {
*stream
b Samples
sorted bool
}
func newStream(ƒ invariant) *Stream {
x := &stream{ƒ: ƒ}
return &Stream{x, make(Samples, 0, 500), true}
}
// Insert inserts v into the stream.
func (s *Stream) Insert(v float64) {
s.insert(Sample{Value: v, Width: 1})
}
func (s *Stream) insert(sample Sample) {
s.b = append(s.b, sample)
s.sorted = false
if len(s.b) == cap(s.b) {
s.flush()
}
}
// Query returns the computed qth percentiles value. If s was created with
// NewTargeted, and q is not in the set of quantiles provided a priori, Query
// will return an unspecified result.
func (s *Stream) Query(q float64) float64 {
if !s.flushed() {
// Fast path when there hasn't been enough data for a flush;
// this also yields better accuracy for small sets of data.
l := len(s.b)
if l == 0 {
return 0
}
i := int(float64(l) * q)
if i > 0 {
i -= 1
}
s.maybeSort()
return s.b[i].Value
}
s.flush()
return s.stream.query(q)
}
// Merge merges samples into the underlying streams samples. This is handy when
// merging multiple streams from separate threads, database shards, etc.
//
// ATTENTION: This method is broken and does not yield correct results. The
// underlying algorithm is not capable of merging streams correctly.
func (s *Stream) Merge(samples Samples) {
sort.Sort(samples)
s.stream.merge(samples)
}
// Reset reinitializes and clears the list reusing the samples buffer memory.
func (s *Stream) Reset() {
s.stream.reset()
s.b = s.b[:0]
}
// Samples returns stream samples held by s.
func (s *Stream) Samples() Samples {
if !s.flushed() {
return s.b
}
s.flush()
return s.stream.samples()
}
// Count returns the total number of samples observed in the stream
// since initialization.
func (s *Stream) Count() int {
return len(s.b) + s.stream.count()
}
func (s *Stream) flush() {
s.maybeSort()
s.stream.merge(s.b)
s.b = s.b[:0]
}
func (s *Stream) maybeSort() {
if !s.sorted {
s.sorted = true
sort.Sort(s.b)
}
}
func (s *Stream) flushed() bool {
return len(s.stream.l) > 0
}
type stream struct {
n float64
l []Sample
ƒ invariant
}
func (s *stream) reset() {
s.l = s.l[:0]
s.n = 0
}
func (s *stream) insert(v float64) {
s.merge(Samples{{v, 1, 0}})
}
func (s *stream) merge(samples Samples) {
// TODO(beorn7): This tries to merge not only individual samples, but
// whole summaries. The paper doesn't mention merging summaries at
// all. Unittests show that the merging is inaccurate. Find out how to
// do merges properly.
var r float64
i := 0
for _, sample := range samples {
for ; i < len(s.l); i++ {
c := s.l[i]
if c.Value > sample.Value {
// Insert at position i.
s.l = append(s.l, Sample{})
copy(s.l[i+1:], s.l[i:])
s.l[i] = Sample{
sample.Value,
sample.Width,
math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1),
// TODO(beorn7): How to calculate delta correctly?
}
i++
goto inserted
}
r += c.Width
}
s.l = append(s.l, Sample{sample.Value, sample.Width, 0})
i++
inserted:
s.n += sample.Width
r += sample.Width
}
s.compress()
}
func (s *stream) count() int {
return int(s.n)
}
func (s *stream) query(q float64) float64 {
t := math.Ceil(q * s.n)
t += math.Ceil(s.ƒ(s, t) / 2)
p := s.l[0]
var r float64
for _, c := range s.l[1:] {
r += p.Width
if r+c.Width+c.Delta > t {
return p.Value
}
p = c
}
return p.Value
}
func (s *stream) compress() {
if len(s.l) < 2 {
return
}
x := s.l[len(s.l)-1]
xi := len(s.l) - 1
r := s.n - 1 - x.Width
for i := len(s.l) - 2; i >= 0; i-- {
c := s.l[i]
if c.Width+x.Width+x.Delta <= s.ƒ(s, r) {
x.Width += c.Width
s.l[xi] = x
// Remove element at i.
copy(s.l[i:], s.l[i+1:])
s.l = s.l[:len(s.l)-1]
xi -= 1
} else {
x = c
xi = i
}
r -= c.Width
}
}
func (s *stream) samples() Samples {
samples := make(Samples, len(s.l))
copy(samples, s.l)
return samples
}

View File

@ -0,0 +1,185 @@
package quantile
import (
"math"
"math/rand"
"sort"
"testing"
)
var (
Targets = map[float64]float64{
0.01: 0.001,
0.10: 0.01,
0.50: 0.05,
0.90: 0.01,
0.99: 0.001,
}
TargetsSmallEpsilon = map[float64]float64{
0.01: 0.0001,
0.10: 0.001,
0.50: 0.005,
0.90: 0.001,
0.99: 0.0001,
}
LowQuantiles = []float64{0.01, 0.1, 0.5}
HighQuantiles = []float64{0.99, 0.9, 0.5}
)
const RelativeEpsilon = 0.01
func verifyPercsWithAbsoluteEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for quantile, epsilon := range Targets {
n := float64(len(a))
k := int(quantile * n)
lower := int((quantile - epsilon) * n)
if lower < 1 {
lower = 1
}
upper := int(math.Ceil((quantile + epsilon) * n))
if upper > len(a) {
upper = len(a)
}
w, min, max := a[k-1], a[lower-1], a[upper-1]
if g := s.Query(quantile); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", quantile, w, min, max, g)
}
}
}
func verifyLowPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for _, qu := range LowQuantiles {
n := float64(len(a))
k := int(qu * n)
lowerRank := int((1 - RelativeEpsilon) * qu * n)
upperRank := int(math.Ceil((1 + RelativeEpsilon) * qu * n))
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
if g := s.Query(qu); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
}
}
}
func verifyHighPercsWithRelativeEpsilon(t *testing.T, a []float64, s *Stream) {
sort.Float64s(a)
for _, qu := range HighQuantiles {
n := float64(len(a))
k := int(qu * n)
lowerRank := int((1 - (1+RelativeEpsilon)*(1-qu)) * n)
upperRank := int(math.Ceil((1 - (1-RelativeEpsilon)*(1-qu)) * n))
w, min, max := a[k-1], a[lowerRank-1], a[upperRank-1]
if g := s.Query(qu); g < min || g > max {
t.Errorf("q=%f: want %v [%f,%f], got %v", qu, w, min, max, g)
}
}
}
func populateStream(s *Stream) []float64 {
a := make([]float64, 0, 1e5+100)
for i := 0; i < cap(a); i++ {
v := rand.NormFloat64()
// Add 5% asymmetric outliers.
if i%20 == 0 {
v = v*v + 1
}
s.Insert(v)
a = append(a, v)
}
return a
}
func TestTargetedQuery(t *testing.T) {
rand.Seed(42)
s := NewTargeted(Targets)
a := populateStream(s)
verifyPercsWithAbsoluteEpsilon(t, a, s)
}
func TestLowBiasedQuery(t *testing.T) {
rand.Seed(42)
s := NewLowBiased(RelativeEpsilon)
a := populateStream(s)
verifyLowPercsWithRelativeEpsilon(t, a, s)
}
func TestHighBiasedQuery(t *testing.T) {
rand.Seed(42)
s := NewHighBiased(RelativeEpsilon)
a := populateStream(s)
verifyHighPercsWithRelativeEpsilon(t, a, s)
}
func TestTargetedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewTargeted(Targets)
s2 := NewTargeted(Targets)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyPercsWithAbsoluteEpsilon(t, a, s1)
}
func TestLowBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewLowBiased(RelativeEpsilon)
s2 := NewLowBiased(RelativeEpsilon)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyLowPercsWithRelativeEpsilon(t, a, s2)
}
func TestHighBiasedMerge(t *testing.T) {
rand.Seed(42)
s1 := NewHighBiased(RelativeEpsilon)
s2 := NewHighBiased(RelativeEpsilon)
a := populateStream(s1)
a = append(a, populateStream(s2)...)
s1.Merge(s2.Samples())
verifyHighPercsWithRelativeEpsilon(t, a, s2)
}
func TestUncompressed(t *testing.T) {
q := NewTargeted(Targets)
for i := 100; i > 0; i-- {
q.Insert(float64(i))
}
if g := q.Count(); g != 100 {
t.Errorf("want count 100, got %d", g)
}
// Before compression, Query should have 100% accuracy.
for quantile := range Targets {
w := quantile * 100
if g := q.Query(quantile); g != w {
t.Errorf("want %f, got %f", w, g)
}
}
}
func TestUncompressedSamples(t *testing.T) {
q := NewTargeted(map[float64]float64{0.99: 0.001})
for i := 1; i <= 100; i++ {
q.Insert(float64(i))
}
if g := q.Samples().Len(); g != 100 {
t.Errorf("want count 100, got %d", g)
}
}
func TestUncompressedOne(t *testing.T) {
q := NewTargeted(map[float64]float64{0.99: 0.01})
q.Insert(3.14)
if g := q.Query(0.90); g != 3.14 {
t.Error("want PI, got", g)
}
}
func TestDefaults(t *testing.T) {
if g := NewTargeted(map[float64]float64{0.99: 0.001}).Query(0.99); g != 0 {
t.Errorf("want 0, got %f", g)
}
}

View File

@ -0,0 +1,110 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"strconv"
)
// Fingerprint provides a hash-capable representation of a Metric.
// For our purposes, FNV-1A 64-bit is used.
type Fingerprint uint64
func (f Fingerprint) String() string {
return fmt.Sprintf("%016x", uint64(f))
}
// Less implements sort.Interface.
func (f Fingerprint) Less(o Fingerprint) bool {
return f < o
}
// Equal implements sort.Interface.
func (f Fingerprint) Equal(o Fingerprint) bool {
return f == o
}
// LoadFromString transforms a string representation into a Fingerprint.
func (f *Fingerprint) LoadFromString(s string) error {
num, err := strconv.ParseUint(s, 16, 64)
if err != nil {
return err
}
*f = Fingerprint(num)
return nil
}
// Fingerprints represents a collection of Fingerprint subject to a given
// natural sorting scheme. It implements sort.Interface.
type Fingerprints []Fingerprint
// Len implements sort.Interface.
func (f Fingerprints) Len() int {
return len(f)
}
// Less implements sort.Interface.
func (f Fingerprints) Less(i, j int) bool {
return f[i] < f[j]
}
// Swap implements sort.Interface.
func (f Fingerprints) Swap(i, j int) {
f[i], f[j] = f[j], f[i]
}
// FingerprintSet is a set of Fingerprints.
type FingerprintSet map[Fingerprint]struct{}
// Equal returns true if both sets contain the same elements (and not more).
func (s FingerprintSet) Equal(o FingerprintSet) bool {
if len(s) != len(o) {
return false
}
for k := range s {
if _, ok := o[k]; !ok {
return false
}
}
return true
}
// Intersection returns the elements contained in both sets.
func (s FingerprintSet) Intersection(o FingerprintSet) FingerprintSet {
myLength, otherLength := len(s), len(o)
if myLength == 0 || otherLength == 0 {
return FingerprintSet{}
}
subSet := s
superSet := o
if otherLength < myLength {
subSet = o
superSet = s
}
out := FingerprintSet{}
for k := range subSet {
if _, ok := superSet[k]; ok {
out[k] = struct{}{}
}
}
return out
}

View File

@ -0,0 +1,63 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"strings"
)
const (
// ExporterLabelPrefix is the label name prefix to prepend if a
// synthetic label is already present in the exported metrics.
ExporterLabelPrefix LabelName = "exporter_"
// MetricNameLabel is the label name indicating the metric name of a
// timeseries.
MetricNameLabel LabelName = "__name__"
// ReservedLabelPrefix is a prefix which is not legal in user-supplied
// label names.
ReservedLabelPrefix = "__"
// JobLabel is the label name indicating the job from which a timeseries
// was scraped.
JobLabel LabelName = "job"
)
// A LabelName is a key for a LabelSet or Metric. It has a value associated
// therewith.
type LabelName string
// LabelNames is a sortable LabelName slice. In implements sort.Interface.
type LabelNames []LabelName
func (l LabelNames) Len() int {
return len(l)
}
func (l LabelNames) Less(i, j int) bool {
return l[i] < l[j]
}
func (l LabelNames) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
func (l LabelNames) String() string {
labelStrings := make([]string, 0, len(l))
for _, label := range l {
labelStrings = append(labelStrings, string(label))
}
return strings.Join(labelStrings, ", ")
}

View File

@ -0,0 +1,55 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"sort"
"testing"
)
func testLabelNames(t testing.TB) {
var scenarios = []struct {
in LabelNames
out LabelNames
}{
{
in: LabelNames{"ZZZ", "zzz"},
out: LabelNames{"ZZZ", "zzz"},
},
{
in: LabelNames{"aaa", "AAA"},
out: LabelNames{"AAA", "aaa"},
},
}
for i, scenario := range scenarios {
sort.Sort(scenario.in)
for j, expected := range scenario.out {
if expected != scenario.in[j] {
t.Errorf("%d.%d expected %s, got %s", i, j, expected, scenario.in[j])
}
}
}
}
func TestLabelNames(t *testing.T) {
testLabelNames(t)
}
func BenchmarkLabelNames(b *testing.B) {
for i := 0; i < b.N; i++ {
testLabelNames(b)
}
}

View File

@ -0,0 +1,64 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"sort"
"strings"
)
// A LabelSet is a collection of LabelName and LabelValue pairs. The LabelSet
// may be fully-qualified down to the point where it may resolve to a single
// Metric in the data store or not. All operations that occur within the realm
// of a LabelSet can emit a vector of Metric entities to which the LabelSet may
// match.
type LabelSet map[LabelName]LabelValue
// Merge is a helper function to non-destructively merge two label sets.
func (l LabelSet) Merge(other LabelSet) LabelSet {
result := make(LabelSet, len(l))
for k, v := range l {
result[k] = v
}
for k, v := range other {
result[k] = v
}
return result
}
func (l LabelSet) String() string {
labelStrings := make([]string, 0, len(l))
for label, value := range l {
labelStrings = append(labelStrings, fmt.Sprintf("%s=%q", label, value))
}
switch len(labelStrings) {
case 0:
return ""
default:
sort.Strings(labelStrings)
return fmt.Sprintf("{%s}", strings.Join(labelStrings, ", "))
}
}
// MergeFromMetric merges Metric into this LabelSet.
func (l LabelSet) MergeFromMetric(m Metric) {
for k, v := range m {
l[k] = v
}
}

View File

@ -0,0 +1,36 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"sort"
)
// A LabelValue is an associated value for a LabelName.
type LabelValue string
// LabelValues is a sortable LabelValue slice. It implements sort.Interface.
type LabelValues []LabelValue
func (l LabelValues) Len() int {
return len(l)
}
func (l LabelValues) Less(i, j int) bool {
return sort.StringsAreSorted([]string{string(l[i]), string(l[j])})
}
func (l LabelValues) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}

View File

@ -0,0 +1,55 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"sort"
"testing"
)
func testLabelValues(t testing.TB) {
var scenarios = []struct {
in LabelValues
out LabelValues
}{
{
in: LabelValues{"ZZZ", "zzz"},
out: LabelValues{"ZZZ", "zzz"},
},
{
in: LabelValues{"aaa", "AAA"},
out: LabelValues{"AAA", "aaa"},
},
}
for i, scenario := range scenarios {
sort.Sort(scenario.in)
for j, expected := range scenario.out {
if expected != scenario.in[j] {
t.Errorf("%d.%d expected %s, got %s", i, j, expected, scenario.in[j])
}
}
}
}
func TestLabelValues(t *testing.T) {
testLabelValues(t)
}
func BenchmarkLabelValues(b *testing.B) {
for i := 0; i < b.N; i++ {
testLabelValues(b)
}
}

View File

@ -0,0 +1,151 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"encoding/binary"
"encoding/json"
"fmt"
"hash/fnv"
"sort"
"strings"
)
// A Metric is similar to a LabelSet, but the key difference is that a Metric is
// a singleton and refers to one and only one stream of samples.
type Metric map[LabelName]LabelValue
// Equal compares the fingerprints of both metrics.
func (m Metric) Equal(o Metric) bool {
return m.Fingerprint().Equal(o.Fingerprint())
}
// Before compares the fingerprints of both metrics.
func (m Metric) Before(o Metric) bool {
return m.Fingerprint().Less(o.Fingerprint())
}
// String implements Stringer.
func (m Metric) String() string {
metricName, hasName := m[MetricNameLabel]
numLabels := len(m) - 1
if !hasName {
numLabels = len(m)
}
labelStrings := make([]string, 0, numLabels)
for label, value := range m {
if label != MetricNameLabel {
labelStrings = append(labelStrings, fmt.Sprintf("%s=%q", label, value))
}
}
switch numLabels {
case 0:
if hasName {
return string(metricName)
}
return "{}"
default:
sort.Strings(labelStrings)
return fmt.Sprintf("%s{%s}", metricName, strings.Join(labelStrings, ", "))
}
}
// Fingerprint returns a Metric's Fingerprint.
func (m Metric) Fingerprint() Fingerprint {
labelLength := len(m)
labelNames := make([]string, 0, labelLength)
for labelName := range m {
labelNames = append(labelNames, string(labelName))
}
sort.Strings(labelNames)
summer := fnv.New64a()
for _, labelName := range labelNames {
labelValue := m[LabelName(labelName)]
summer.Write([]byte(labelName))
summer.Write([]byte{0})
summer.Write([]byte(labelValue))
}
return Fingerprint(binary.LittleEndian.Uint64(summer.Sum(nil)))
}
// Clone returns a copy of the Metric.
func (m Metric) Clone() Metric {
clone := Metric{}
for k, v := range m {
clone[k] = v
}
return clone
}
// MergeFromLabelSet merges a label set into this Metric, prefixing a collision
// prefix to the label names merged from the label set where required.
func (m Metric) MergeFromLabelSet(labels LabelSet, collisionPrefix LabelName) {
for k, v := range labels {
if collisionPrefix != "" {
for {
if _, exists := m[k]; !exists {
break
}
k = collisionPrefix + k
}
}
m[k] = v
}
}
// COWMetric wraps a Metric to enable copy-on-write access patterns.
type COWMetric struct {
Copied bool
Metric Metric
}
// Set sets a label name in the wrapped Metric to a given value and copies the
// Metric initially, if it is not already a copy.
func (m COWMetric) Set(ln LabelName, lv LabelValue) {
m.doCOW()
m.Metric[ln] = lv
}
// Delete deletes a given label name from the wrapped Metric and copies the
// Metric initially, if it is not already a copy.
func (m *COWMetric) Delete(ln LabelName) {
m.doCOW()
delete(m.Metric, ln)
}
// doCOW copies the underlying Metric if it is not already a copy.
func (m *COWMetric) doCOW() {
if !m.Copied {
m.Metric = m.Metric.Clone()
m.Copied = true
}
}
// String implements fmt.Stringer.
func (m COWMetric) String() string {
return m.Metric.String()
}
// MarshalJSON implements json.Marshaler.
func (m COWMetric) MarshalJSON() ([]byte, error) {
return json.Marshal(m.Metric)
}

View File

@ -0,0 +1,58 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import "testing"
func testMetric(t testing.TB) {
var scenarios = []struct {
input Metric
fingerprint Fingerprint
}{
{
input: Metric{},
fingerprint: 2676020557754725067,
},
{
input: Metric{
"first_name": "electro",
"occupation": "robot",
"manufacturer": "westinghouse",
},
fingerprint: 13260944541294022935,
},
{
input: Metric{
"x": "y",
},
fingerprint: 1470933794305433534,
},
}
for i, scenario := range scenarios {
if scenario.fingerprint != scenario.input.Fingerprint() {
t.Errorf("%d. expected %d, got %d", i, scenario.fingerprint, scenario.input.Fingerprint())
}
}
}
func TestMetric(t *testing.T) {
testMetric(t)
}
func BenchmarkMetric(b *testing.B) {
for i := 0; i < b.N; i++ {
testMetric(b)
}
}

View File

@ -0,0 +1,15 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package model contains core representation of Prometheus client primitives.
package model

View File

@ -0,0 +1,79 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
// Sample is a sample value with a timestamp and a metric.
type Sample struct {
Metric Metric
Value SampleValue
Timestamp Timestamp
}
// Equal compares first the metrics, then the timestamp, then the value.
func (s *Sample) Equal(o *Sample) bool {
if s == o {
return true
}
if !s.Metric.Equal(o.Metric) {
return false
}
if !s.Timestamp.Equal(o.Timestamp) {
return false
}
if !s.Value.Equal(o.Value) {
return false
}
return true
}
// Samples is a sortable Sample slice. It implements sort.Interface.
type Samples []*Sample
func (s Samples) Len() int {
return len(s)
}
// Less compares first the metrics, then the timestamp.
func (s Samples) Less(i, j int) bool {
switch {
case s[i].Metric.Before(s[j].Metric):
return true
case s[j].Metric.Before(s[i].Metric):
return false
case s[i].Timestamp.Before(s[j].Timestamp):
return true
default:
return false
}
}
func (s Samples) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
// Equal compares two sets of samples and returns true if they are equal.
func (s Samples) Equal(o Samples) bool {
if len(s) != len(o) {
return false
}
for i, sample := range s {
if !sample.Equal(o[i]) {
return false
}
}
return true
}

View File

@ -0,0 +1,126 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"sort"
"testing"
)
func TestSamplesSort(t *testing.T) {
input := Samples{
&Sample{
// Fingerprint: 81f9c9ed24563f8f.
Metric: Metric{
MetricNameLabel: "A",
},
Timestamp: 1,
},
&Sample{
// Fingerprint: 81f9c9ed24563f8f.
Metric: Metric{
MetricNameLabel: "A",
},
Timestamp: 2,
},
&Sample{
// Fingerprint: 1bf6c9ed24543f8f.
Metric: Metric{
MetricNameLabel: "C",
},
Timestamp: 1,
},
&Sample{
// Fingerprint: 1bf6c9ed24543f8f.
Metric: Metric{
MetricNameLabel: "C",
},
Timestamp: 2,
},
&Sample{
// Fingerprint: 68f4c9ed24533f8f.
Metric: Metric{
MetricNameLabel: "B",
},
Timestamp: 1,
},
&Sample{
// Fingerprint: 68f4c9ed24533f8f.
Metric: Metric{
MetricNameLabel: "B",
},
Timestamp: 2,
},
}
expected := Samples{
&Sample{
// Fingerprint: 1bf6c9ed24543f8f.
Metric: Metric{
MetricNameLabel: "C",
},
Timestamp: 1,
},
&Sample{
// Fingerprint: 1bf6c9ed24543f8f.
Metric: Metric{
MetricNameLabel: "C",
},
Timestamp: 2,
},
&Sample{
// Fingerprint: 68f4c9ed24533f8f.
Metric: Metric{
MetricNameLabel: "B",
},
Timestamp: 1,
},
&Sample{
// Fingerprint: 68f4c9ed24533f8f.
Metric: Metric{
MetricNameLabel: "B",
},
Timestamp: 2,
},
&Sample{
// Fingerprint: 81f9c9ed24563f8f.
Metric: Metric{
MetricNameLabel: "A",
},
Timestamp: 1,
},
&Sample{
// Fingerprint: 81f9c9ed24563f8f.
Metric: Metric{
MetricNameLabel: "A",
},
Timestamp: 2,
},
}
sort.Sort(input)
for i, actual := range input {
actualFp := actual.Metric.Fingerprint()
expectedFp := expected[i].Metric.Fingerprint()
if !actualFp.Equal(expectedFp) {
t.Fatalf("%d. Incorrect fingerprint. Got %s; want %s", i, actualFp.String(), expectedFp.String())
}
if actual.Timestamp != expected[i].Timestamp {
t.Fatalf("%d. Incorrect timestamp. Got %s; want %s", i, actual.Timestamp, expected[i].Timestamp)
}
}
}

View File

@ -0,0 +1,37 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"fmt"
"strconv"
)
// A SampleValue is a representation of a value for a given sample at a given
// time.
type SampleValue float64
// Equal does a straight v==o.
func (v SampleValue) Equal(o SampleValue) bool {
return v == o
}
// MarshalJSON implements json.Marshaler.
func (v SampleValue) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%s"`, v)), nil
}
func (v SampleValue) String() string {
return strconv.FormatFloat(float64(v), 'f', -1, 64)
}

View File

@ -0,0 +1,97 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"bytes"
"hash"
"hash/fnv"
)
// SeparatorByte is a byte that cannot occur in valid UTF-8 sequences and is
// used to separate label names, label values, and other strings from each other
// when calculating their combined hash value (aka signature aka fingerprint).
const SeparatorByte byte = 255
var (
// cache the signature of an empty label set.
emptyLabelSignature = fnv.New64a().Sum64()
hashAndBufPool = make(chan *hashAndBuf, 1024)
)
type hashAndBuf struct {
h hash.Hash64
b bytes.Buffer
}
func getHashAndBuf() *hashAndBuf {
select {
case hb := <-hashAndBufPool:
return hb
default:
return &hashAndBuf{h: fnv.New64a()}
}
}
func putHashAndBuf(hb *hashAndBuf) {
select {
case hashAndBufPool <- hb:
default:
}
}
// LabelsToSignature returns a unique signature (i.e., fingerprint) for a given
// label set.
func LabelsToSignature(labels map[string]string) uint64 {
if len(labels) == 0 {
return emptyLabelSignature
}
var result uint64
hb := getHashAndBuf()
defer putHashAndBuf(hb)
for k, v := range labels {
hb.b.WriteString(k)
hb.b.WriteByte(SeparatorByte)
hb.b.WriteString(v)
hb.h.Write(hb.b.Bytes())
result ^= hb.h.Sum64()
hb.h.Reset()
hb.b.Reset()
}
return result
}
// LabelValuesToSignature returns a unique signature (i.e., fingerprint) for the
// values of a given label set.
func LabelValuesToSignature(labels map[string]string) uint64 {
if len(labels) == 0 {
return emptyLabelSignature
}
var result uint64
hb := getHashAndBuf()
defer putHashAndBuf(hb)
for _, v := range labels {
hb.b.WriteString(v)
hb.h.Write(hb.b.Bytes())
result ^= hb.h.Sum64()
hb.h.Reset()
hb.b.Reset()
}
return result
}

View File

@ -0,0 +1,120 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"runtime"
"testing"
)
func testLabelsToSignature(t testing.TB) {
var scenarios = []struct {
in map[string]string
out uint64
}{
{
in: map[string]string{},
out: 14695981039346656037,
},
{
in: map[string]string{"name": "garland, briggs", "fear": "love is not enough"},
out: 12952432476264840823,
},
}
for i, scenario := range scenarios {
actual := LabelsToSignature(scenario.in)
if actual != scenario.out {
t.Errorf("%d. expected %d, got %d", i, scenario.out, actual)
}
}
}
func TestLabelToSignature(t *testing.T) {
testLabelsToSignature(t)
}
func TestEmptyLabelSignature(t *testing.T) {
input := []map[string]string{nil, {}}
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
alloc := ms.Alloc
for _, labels := range input {
LabelsToSignature(labels)
}
runtime.ReadMemStats(&ms)
if got := ms.Alloc; alloc != got {
t.Fatal("expected LabelsToSignature with empty labels not to perform allocations")
}
}
func BenchmarkLabelToSignature(b *testing.B) {
for i := 0; i < b.N; i++ {
testLabelsToSignature(b)
}
}
func benchmarkLabelValuesToSignature(b *testing.B, l map[string]string, e uint64) {
for i := 0; i < b.N; i++ {
if a := LabelValuesToSignature(l); a != e {
b.Fatalf("expected signature of %d for %s, got %d", e, l, a)
}
}
}
func BenchmarkLabelValuesToSignatureScalar(b *testing.B) {
benchmarkLabelValuesToSignature(b, nil, 14695981039346656037)
}
func BenchmarkLabelValuesToSignatureSingle(b *testing.B) {
benchmarkLabelValuesToSignature(b, map[string]string{"first-label": "first-label-value"}, 2653746141194979650)
}
func BenchmarkLabelValuesToSignatureDouble(b *testing.B) {
benchmarkLabelValuesToSignature(b, map[string]string{"first-label": "first-label-value", "second-label": "second-label-value"}, 8893559499616767364)
}
func BenchmarkLabelValuesToSignatureTriple(b *testing.B) {
benchmarkLabelValuesToSignature(b, map[string]string{"first-label": "first-label-value", "second-label": "second-label-value", "third-label": "third-label-value"}, 1685970066862087833)
}
func benchmarkLabelToSignature(b *testing.B, l map[string]string, e uint64) {
for i := 0; i < b.N; i++ {
if a := LabelsToSignature(l); a != e {
b.Fatalf("expected signature of %d for %s, got %d", e, l, a)
}
}
}
func BenchmarkLabelToSignatureScalar(b *testing.B) {
benchmarkLabelToSignature(b, nil, 14695981039346656037)
}
func BenchmarkLabelToSignatureSingle(b *testing.B) {
benchmarkLabelToSignature(b, map[string]string{"first-label": "first-label-value"}, 5147259542624943964)
}
func BenchmarkLabelToSignatureDouble(b *testing.B) {
benchmarkLabelToSignature(b, map[string]string{"first-label": "first-label-value", "second-label": "second-label-value"}, 18269973311206963528)
}
func BenchmarkLabelToSignatureTriple(b *testing.B) {
benchmarkLabelToSignature(b, map[string]string{"first-label": "first-label-value", "second-label": "second-label-value", "third-label": "third-label-value"}, 15738406913934009676)
}

View File

@ -0,0 +1,112 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"strconv"
native_time "time"
)
// TODO(julius): Should this use milliseconds/nanoseconds instead? This is
// mostly hidden from the user of these types when using the
// methods below, so it will be easy to change this later
// without requiring significant user code changes.
// Timestamp is the number of seconds since the epoch (1970-01-01 00:00 UTC)
// without leap seconds.
type Timestamp int64
const (
// MinimumTick is the minimum supported time resolution. This has to be
// at least native_time.Second in order for the code below to work.
MinimumTick = native_time.Millisecond
// second is the timestamp duration equivalent to one second.
second = int64(native_time.Second / MinimumTick)
// The number of nanoseconds per minimum tick.
nanosPerTick = int64(MinimumTick / native_time.Nanosecond)
)
// Equal reports whether two timestamps represent the same instant.
func (t Timestamp) Equal(o Timestamp) bool {
return t == o
}
// Before reports whether the timestamp t is before o.
func (t Timestamp) Before(o Timestamp) bool {
return t < o
}
// After reports whether the timestamp t is after o.
func (t Timestamp) After(o Timestamp) bool {
return t > o
}
// Add returns the Timestamp t + d.
func (t Timestamp) Add(d native_time.Duration) Timestamp {
return t + Timestamp(d/MinimumTick)
}
// Sub returns the Duration t - o.
func (t Timestamp) Sub(o Timestamp) native_time.Duration {
return native_time.Duration(t-o) * MinimumTick
}
// Time returns the time.Time representation of t.
func (t Timestamp) Time() native_time.Time {
return native_time.Unix(int64(t)/second, (int64(t)%second)*nanosPerTick)
}
// Unix returns t as a Unix time, the number of seconds elapsed
// since January 1, 1970 UTC.
func (t Timestamp) Unix() int64 {
return int64(t) / second
}
// UnixNano returns t as a Unix time, the number of nanoseconds elapsed
// since January 1, 1970 UTC.
func (t Timestamp) UnixNano() int64 {
return int64(t) * nanosPerTick
}
// String returns a string representation of the timestamp.
func (t Timestamp) String() string {
return strconv.FormatFloat(float64(t)/float64(second), 'f', -1, 64)
}
func (t Timestamp) MarshalJSON() ([]byte, error) {
return []byte(t.String()), nil
}
// Now returns the current time as a Timestamp.
func Now() Timestamp {
return TimestampFromTime(native_time.Now())
}
// TimestampFromTime returns the Timestamp equivalent to the time.Time t.
func TimestampFromTime(t native_time.Time) Timestamp {
return TimestampFromUnixNano(t.UnixNano())
}
// TimestampFromUnix returns the Timestamp equivalent to the Unix timestamp t
// provided in seconds.
func TimestampFromUnix(t int64) Timestamp {
return Timestamp(t * second)
}
// TimestampFromUnixNano returns the Timestamp equivalent to the Unix timestamp
// t provided in nanoseconds.
func TimestampFromUnixNano(t int64) Timestamp {
return Timestamp(t / nanosPerTick)
}

View File

@ -0,0 +1,86 @@
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package model
import (
"testing"
native_time "time"
)
func TestComparators(t *testing.T) {
t1a := TimestampFromUnix(0)
t1b := TimestampFromUnix(0)
t2 := TimestampFromUnix(2*second - 1)
if !t1a.Equal(t1b) {
t.Fatalf("Expected %s to be equal to %s", t1a, t1b)
}
if t1a.Equal(t2) {
t.Fatalf("Expected %s to not be equal to %s", t1a, t2)
}
if !t1a.Before(t2) {
t.Fatalf("Expected %s to be before %s", t1a, t2)
}
if t1a.Before(t1b) {
t.Fatalf("Expected %s to not be before %s", t1a, t1b)
}
if !t2.After(t1a) {
t.Fatalf("Expected %s to be after %s", t2, t1a)
}
if t1b.After(t1a) {
t.Fatalf("Expected %s to not be after %s", t1b, t1a)
}
}
func TestTimestampConversions(t *testing.T) {
unixSecs := int64(1136239445)
unixNsecs := int64(123456789)
unixNano := unixSecs*1000000000 + unixNsecs
t1 := native_time.Unix(unixSecs, unixNsecs-unixNsecs%nanosPerTick)
t2 := native_time.Unix(unixSecs, unixNsecs)
ts := TimestampFromUnixNano(unixNano)
if !ts.Time().Equal(t1) {
t.Fatalf("Expected %s, got %s", t1, ts.Time())
}
// Test available precision.
ts = TimestampFromTime(t2)
if !ts.Time().Equal(t1) {
t.Fatalf("Expected %s, got %s", t1, ts.Time())
}
if ts.UnixNano() != unixNano-unixNano%nanosPerTick {
t.Fatalf("Expected %d, got %d", unixNano, ts.UnixNano())
}
}
func TestDuration(t *testing.T) {
duration := native_time.Second + native_time.Minute + native_time.Hour
goTime := native_time.Unix(1136239445, 0)
ts := TimestampFromTime(goTime)
if !goTime.Add(duration).Equal(ts.Add(duration).Time()) {
t.Fatalf("Expected %s to be equal to %s", goTime.Add(duration), ts.Add(duration))
}
earlier := ts.Add(-duration)
delta := ts.Sub(earlier)
if delta != duration {
t.Fatalf("Expected %s to be equal to %s", delta, duration)
}
}

View File

@ -0,0 +1 @@
command-line-arguments.test

View File

@ -0,0 +1,53 @@
# Overview
This is the [Prometheus](http://www.prometheus.io) telemetric
instrumentation client [Go](http://golang.org) client library. It
enable authors to define process-space metrics for their servers and
expose them through a web service interface for extraction,
aggregation, and a whole slew of other post processing techniques.
# Installing
$ go get github.com/prometheus/client_golang/prometheus
# Example
```go
package main
import (
"net/http"
"github.com/prometheus/client_golang/prometheus"
)
var (
indexed = prometheus.NewCounter(prometheus.CounterOpts{
Namespace: "my_company",
Subsystem: "indexer",
Name: "documents_indexed",
Help: "The number of documents indexed.",
})
size = prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: "my_company",
Subsystem: "storage",
Name: "documents_total_size_bytes",
Help: "The total size of all documents in the storage."}})
)
func main() {
http.Handle("/metrics", prometheus.Handler())
indexed.Inc()
size.Set(5)
http.ListenAndServe(":8080", nil)
}
func init() {
prometheus.MustRegister(indexed)
prometheus.MustRegister(size)
}
```
# Documentation
[![GoDoc](https://godoc.org/github.com/prometheus/client_golang?status.png)](https://godoc.org/github.com/prometheus/client_golang)

View File

@ -0,0 +1,131 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"testing"
)
func BenchmarkCounterWithLabelValues(b *testing.B) {
m := NewCounterVec(
CounterOpts{
Name: "benchmark_counter",
Help: "A counter to benchmark it.",
},
[]string{"one", "two", "three"},
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.WithLabelValues("eins", "zwei", "drei").Inc()
}
}
func BenchmarkCounterWithMappedLabels(b *testing.B) {
m := NewCounterVec(
CounterOpts{
Name: "benchmark_counter",
Help: "A counter to benchmark it.",
},
[]string{"one", "two", "three"},
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.With(Labels{"two": "zwei", "one": "eins", "three": "drei"}).Inc()
}
}
func BenchmarkCounterWithPreparedMappedLabels(b *testing.B) {
m := NewCounterVec(
CounterOpts{
Name: "benchmark_counter",
Help: "A counter to benchmark it.",
},
[]string{"one", "two", "three"},
)
b.ReportAllocs()
b.ResetTimer()
labels := Labels{"two": "zwei", "one": "eins", "three": "drei"}
for i := 0; i < b.N; i++ {
m.With(labels).Inc()
}
}
func BenchmarkCounterNoLabels(b *testing.B) {
m := NewCounter(CounterOpts{
Name: "benchmark_counter",
Help: "A counter to benchmark it.",
})
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.Inc()
}
}
func BenchmarkGaugeWithLabelValues(b *testing.B) {
m := NewGaugeVec(
GaugeOpts{
Name: "benchmark_gauge",
Help: "A gauge to benchmark it.",
},
[]string{"one", "two", "three"},
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.WithLabelValues("eins", "zwei", "drei").Set(3.1415)
}
}
func BenchmarkGaugeNoLabels(b *testing.B) {
m := NewGauge(GaugeOpts{
Name: "benchmark_gauge",
Help: "A gauge to benchmark it.",
})
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.Set(3.1415)
}
}
func BenchmarkSummaryWithLabelValues(b *testing.B) {
m := NewSummaryVec(
SummaryOpts{
Name: "benchmark_summary",
Help: "A summary to benchmark it.",
},
[]string{"one", "two", "three"},
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.WithLabelValues("eins", "zwei", "drei").Observe(3.1415)
}
}
func BenchmarkSummaryNoLabels(b *testing.B) {
m := NewSummary(SummaryOpts{
Name: "benchmark_summary",
Help: "A summary to benchmark it.",
},
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
m.Observe(3.1415)
}
}

View File

@ -0,0 +1,75 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
// Collector is the interface implemented by anything that can be used by
// Prometheus to collect metrics. A Collector has to be registered for
// collection. See Register, MustRegister, RegisterOrGet, and MustRegisterOrGet.
//
// The stock metrics provided by this package (like Gauge, Counter, Summary) are
// also Collectors (which only ever collect one metric, namely itself). An
// implementer of Collector may, however, collect multiple metrics in a
// coordinated fashion and/or create metrics on the fly. Examples for collectors
// already implemented in this library are the metric vectors (i.e. collection
// of multiple instances of the same Metric but with different label values)
// like GaugeVec or SummaryVec, and the ExpvarCollector.
type Collector interface {
// Describe sends the super-set of all possible descriptors of metrics
// collected by this Collector to the provided channel and returns once
// the last descriptor has been sent. The sent descriptors fulfill the
// consistency and uniqueness requirements described in the Desc
// documentation. (It is valid if one and the same Collector sends
// duplicate descriptors. Those duplicates are simply ignored. However,
// two different Collectors must not send duplicate descriptors.) This
// method idempotently sends the same descriptors throughout the
// lifetime of the Collector. If a Collector encounters an error while
// executing this method, it must send an invalid descriptor (created
// with NewInvalidDesc) to signal the error to the registry.
Describe(chan<- *Desc)
// Collect is called by Prometheus when collecting metrics. The
// implementation sends each collected metric via the provided channel
// and returns once the last metric has been sent. The descriptor of
// each sent metric is one of those returned by Describe. Returned
// metrics that share the same descriptor must differ in their variable
// label values. This method may be called concurrently and must
// therefore be implemented in a concurrency safe way. Blocking occurs
// at the expense of total performance of rendering all registered
// metrics. Ideally, Collector implementations support concurrent
// readers.
Collect(chan<- Metric)
}
// SelfCollector implements Collector for a single Metric so that that the
// Metric collects itself. Add it as an anonymous field to a struct that
// implements Metric, and call Init with the Metric itself as an argument.
type SelfCollector struct {
self Metric
}
// Init provides the SelfCollector with a reference to the metric it is supposed
// to collect. It is usually called within the factory function to create a
// metric. See example.
func (c *SelfCollector) Init(self Metric) {
c.self = self
}
// Describe implements Collector.
func (c *SelfCollector) Describe(ch chan<- *Desc) {
ch <- c.self.Desc()
}
// Collect implements Collector.
func (c *SelfCollector) Collect(ch chan<- Metric) {
ch <- c.self
}

View File

@ -0,0 +1,175 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"errors"
"hash/fnv"
)
// Counter is a Metric that represents a single numerical value that only ever
// goes up. That implies that it cannot be used to count items whose number can
// also go down, e.g. the number of currently running goroutines. Those
// "counters" are represented by Gauges.
//
// A Counter is typically used to count requests served, tasks completed, errors
// occurred, etc.
//
// To create Counter instances, use NewCounter.
type Counter interface {
Metric
Collector
// Set is used to set the Counter to an arbitrary value. It is only used
// if you have to transfer a value from an external counter into this
// Prometheus metrics. Do not use it for regular handling of a
// Prometheus counter (as it can be used to break the contract of
// monotonically increasing values).
Set(float64)
// Inc increments the counter by 1.
Inc()
// Add adds the given value to the counter. It panics if the value is <
// 0.
Add(float64)
}
// CounterOpts is an alias for Opts. See there for doc comments.
type CounterOpts Opts
// NewCounter creates a new Counter based on the provided CounterOpts.
func NewCounter(opts CounterOpts) Counter {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
)
result := &counter{value: value{desc: desc, valType: CounterValue, labelPairs: desc.constLabelPairs}}
result.Init(result) // Init self-collection.
return result
}
type counter struct {
value
}
func (c *counter) Add(v float64) {
if v < 0 {
panic(errors.New("counter cannot decrease in value"))
}
c.value.Add(v)
}
// CounterVec is a Collector that bundles a set of Counters that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. number of http requests, partitioned by response code and
// method). Create instances with NewCounterVec.
//
// CounterVec embeds MetricVec. See there for a full list of methods with
// detailed documentation.
type CounterVec struct {
MetricVec
}
// NewCounterVec creates a new CounterVec based on the provided CounterOpts and
// partitioned by the given label names. At least one label name must be
// provided.
func NewCounterVec(opts CounterOpts, labelNames []string) *CounterVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &CounterVec{
MetricVec: MetricVec{
children: map[uint64]Metric{},
desc: desc,
hash: fnv.New64a(),
newMetric: func(lvs ...string) Metric {
result := &counter{value: value{
desc: desc,
valType: CounterValue,
labelPairs: makeLabelPairs(desc, lvs),
}}
result.Init(result) // Init self-collection.
return result
},
},
}
}
// GetMetricWithLabelValues replaces the method of the same name in
// MetricVec. The difference is that this method returns a Counter and not a
// Metric so that no type conversion is required.
func (m *CounterVec) GetMetricWithLabelValues(lvs ...string) (Counter, error) {
metric, err := m.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Counter), err
}
return nil, err
}
// GetMetricWith replaces the method of the same name in MetricVec. The
// difference is that this method returns a Counter and not a Metric so that no
// type conversion is required.
func (m *CounterVec) GetMetricWith(labels Labels) (Counter, error) {
metric, err := m.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Counter), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. By not returning an
// error, WithLabelValues allows shortcuts like
// myVec.WithLabelValues("404", "GET").Add(42)
func (m *CounterVec) WithLabelValues(lvs ...string) Counter {
return m.MetricVec.WithLabelValues(lvs...).(Counter)
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. By not returning an error, With allows shortcuts like
// myVec.With(Labels{"code": "404", "method": "GET"}).Add(42)
func (m *CounterVec) With(labels Labels) Counter {
return m.MetricVec.With(labels).(Counter)
}
// CounterFunc is a Counter whose value is determined at collect time by calling a
// provided function.
//
// To create CounterFunc instances, use NewCounterFunc.
type CounterFunc interface {
Metric
Collector
}
// NewCounterFunc creates a new CounterFunc based on the provided
// CounterOpts. The value reported is determined by calling the given function
// from within the Write method. Take into account that metric collection may
// happen concurrently. If that results in concurrent calls to Write, like in
// the case where a CounterFunc is directly registered with Prometheus, the
// provided function must be concurrency-safe. The function should also honor
// the contract for a Counter (values only go up, not down), but compliance will
// not be checked.
func NewCounterFunc(opts CounterOpts, function func() float64) CounterFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), CounterValue, function)
}

View File

@ -0,0 +1,58 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"math"
"testing"
dto "github.com/prometheus/client_model/go"
)
func TestCounterAdd(t *testing.T) {
counter := NewCounter(CounterOpts{
Name: "test",
Help: "test help",
ConstLabels: Labels{"a": "1", "b": "2"},
}).(*counter)
counter.Inc()
if expected, got := 1., math.Float64frombits(counter.valBits); expected != got {
t.Errorf("Expected %f, got %f.", expected, got)
}
counter.Add(42)
if expected, got := 43., math.Float64frombits(counter.valBits); expected != got {
t.Errorf("Expected %f, got %f.", expected, got)
}
if expected, got := "counter cannot decrease in value", decreaseCounter(counter).Error(); expected != got {
t.Errorf("Expected error %q, got %q.", expected, got)
}
m := &dto.Metric{}
counter.Write(m)
if expected, got := `label:<name:"a" value:"1" > label:<name:"b" value:"2" > counter:<value:43 > `, m.String(); expected != got {
t.Errorf("expected %q, got %q", expected, got)
}
}
func decreaseCounter(c *counter) (err error) {
defer func() {
if e := recover(); e != nil {
err = e.(error)
}
}()
c.Add(-1)
return nil
}

View File

@ -0,0 +1,199 @@
package prometheus
import (
"bytes"
"errors"
"fmt"
"hash/fnv"
"regexp"
"sort"
"strings"
"github.com/prometheus/client_golang/model"
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
)
var (
metricNameRE = regexp.MustCompile(`^[a-zA-Z_][a-zA-Z0-9_:]*$`)
labelNameRE = regexp.MustCompile(`^[a-zA-Z_][a-zA-Z0-9_]*$`)
)
// Labels represents a collection of label name -> value mappings. This type is
// commonly used with the With(Labels) and GetMetricWith(Labels) methods of
// metric vector Collectors, e.g.:
// myVec.With(Labels{"code": "404", "method": "GET"}).Add(42)
//
// The other use-case is the specification of constant label pairs in Opts or to
// create a Desc.
type Labels map[string]string
// Desc is the descriptor used by every Prometheus Metric. It is essentially
// the immutable meta-data of a Metric. The normal Metric implementations
// included in this package manage their Desc under the hood. Users only have to
// deal with Desc if they use advanced features like the ExpvarCollector or
// custom Collectors and Metrics.
//
// Descriptors registered with the same registry have to fulfill certain
// consistency and uniqueness criteria if they share the same fully-qualified
// name: They must have the same help string and the same label names (aka label
// dimensions) in each, constLabels and variableLabels, but they must differ in
// the values of the constLabels.
//
// Descriptors that share the same fully-qualified names and the same label
// values of their constLabels are considered equal.
//
// Use NewDesc to create new Desc instances.
type Desc struct {
// fqName has been built from Namespace, Subsystem, and Name.
fqName string
// help provides some helpful information about this metric.
help string
// constLabelPairs contains precalculated DTO label pairs based on
// the constant labels.
constLabelPairs []*dto.LabelPair
// VariableLabels contains names of labels for which the metric
// maintains variable values.
variableLabels []string
// id is a hash of the values of the ConstLabels and fqName. This
// must be unique among all registered descriptors and can therefore be
// used as an identifier of the descriptor.
id uint64
// dimHash is a hash of the label names (preset and variable) and the
// Help string. Each Desc with the same fqName must have the same
// dimHash.
dimHash uint64
// err is an error that occured during construction. It is reported on
// registration time.
err error
}
// NewDesc allocates and initializes a new Desc. Errors are recorded in the Desc
// and will be reported on registration time. variableLabels and constLabels can
// be nil if no such labels should be set. fqName and help must not be empty.
//
// variableLabels only contain the label names. Their label values are variable
// and therefore not part of the Desc. (They are managed within the Metric.)
//
// For constLabels, the label values are constant. Therefore, they are fully
// specified in the Desc. See the Opts documentation for the implications of
// constant labels.
func NewDesc(fqName, help string, variableLabels []string, constLabels Labels) *Desc {
d := &Desc{
fqName: fqName,
help: help,
variableLabels: variableLabels,
}
if help == "" {
d.err = errors.New("empty help string")
return d
}
if !metricNameRE.MatchString(fqName) {
d.err = fmt.Errorf("%q is not a valid metric name", fqName)
return d
}
// labelValues contains the label values of const labels (in order of
// their sorted label names) plus the fqName (at position 0).
labelValues := make([]string, 1, len(constLabels)+1)
labelValues[0] = fqName
labelNames := make([]string, 0, len(constLabels)+len(variableLabels))
labelNameSet := map[string]struct{}{}
// First add only the const label names and sort them...
for labelName := range constLabels {
if !checkLabelName(labelName) {
d.err = fmt.Errorf("%q is not a valid label name", labelName)
return d
}
labelNames = append(labelNames, labelName)
labelNameSet[labelName] = struct{}{}
}
sort.Strings(labelNames)
// ... so that we can now add const label values in the order of their names.
for _, labelName := range labelNames {
labelValues = append(labelValues, constLabels[labelName])
}
// Now add the variable label names, but prefix them with something that
// cannot be in a regular label name. That prevents matching the label
// dimension with a different mix between preset and variable labels.
for _, labelName := range variableLabels {
if !checkLabelName(labelName) {
d.err = fmt.Errorf("%q is not a valid label name", labelName)
return d
}
labelNames = append(labelNames, "$"+labelName)
labelNameSet[labelName] = struct{}{}
}
if len(labelNames) != len(labelNameSet) {
d.err = errors.New("duplicate label names")
return d
}
h := fnv.New64a()
var b bytes.Buffer // To copy string contents into, avoiding []byte allocations.
for _, val := range labelValues {
b.Reset()
b.WriteString(val)
b.WriteByte(model.SeparatorByte)
h.Write(b.Bytes())
}
d.id = h.Sum64()
// Sort labelNames so that order doesn't matter for the hash.
sort.Strings(labelNames)
// Now hash together (in this order) the help string and the sorted
// label names.
h.Reset()
b.Reset()
b.WriteString(help)
b.WriteByte(model.SeparatorByte)
h.Write(b.Bytes())
for _, labelName := range labelNames {
b.Reset()
b.WriteString(labelName)
b.WriteByte(model.SeparatorByte)
h.Write(b.Bytes())
}
d.dimHash = h.Sum64()
d.constLabelPairs = make([]*dto.LabelPair, 0, len(constLabels))
for n, v := range constLabels {
d.constLabelPairs = append(d.constLabelPairs, &dto.LabelPair{
Name: proto.String(n),
Value: proto.String(v),
})
}
sort.Sort(LabelPairSorter(d.constLabelPairs))
return d
}
// NewInvalidDesc returns an invalid descriptor, i.e. a descriptor with the
// provided error set. If a collector returning such a descriptor is registered,
// registration will fail with the provided error. NewInvalidDesc can be used by
// a Collector to signal inability to describe itself.
func NewInvalidDesc(err error) *Desc {
return &Desc{
err: err,
}
}
func (d *Desc) String() string {
lpStrings := make([]string, 0, len(d.constLabelPairs))
for _, lp := range d.constLabelPairs {
lpStrings = append(
lpStrings,
fmt.Sprintf("%s=%q", lp.GetName(), lp.GetValue()),
)
}
return fmt.Sprintf(
"Desc{fqName: %q, help: %q, constLabels: {%s}, variableLabels: %v}",
d.fqName,
d.help,
strings.Join(lpStrings, ","),
d.variableLabels,
)
}
func checkLabelName(l string) bool {
return labelNameRE.MatchString(l) &&
!strings.HasPrefix(l, model.ReservedLabelPrefix)
}

View File

@ -0,0 +1,108 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package prometheus provides embeddable metric primitives for servers and
// standardized exposition of telemetry through a web services interface.
//
// All exported functions and methods are safe to be used concurrently unless
// specified otherwise.
//
// To expose metrics registered with the Prometheus registry, an HTTP server
// needs to know about the Prometheus handler. The usual endpoint is "/metrics".
//
// http.Handle("/metrics", prometheus.Handler())
//
// As a starting point a very basic usage example:
//
// package main
//
// import (
// "net/http"
//
// "github.com/prometheus/client_golang/prometheus"
// )
//
// var (
// cpuTemp = prometheus.NewGauge(prometheus.GaugeOpts{
// Name: "cpu_temperature_celsius",
// Help: "Current temperature of the CPU.",
// })
// hdFailures = prometheus.NewCounter(prometheus.CounterOpts{
// Name: "hd_errors_total",
// Help: "Number of hard-disk errors.",
// })
// )
//
// func init() {
// prometheus.MustRegister(cpuTemp)
// prometheus.MustRegister(hdFailures)
// }
//
// func main() {
// cpuTemp.Set(65.3)
// hdFailures.Inc()
//
// http.Handle("/metrics", prometheus.Handler())
// http.ListenAndServe(":8080", nil)
// }
//
//
// This is a complete program that exports two metrics, a Gauge and a Counter.
// It also exports some stats about the HTTP usage of the /metrics
// endpoint. (See the Handler function for more detail.)
//
// A more advanced metric type is the Summary.
//
// In addition to the fundamental metric types Gauge, Counter, and Summary, a
// very important part of the Prometheus data model is the partitioning of
// samples along dimensions called labels, which results in metric vectors. The
// fundamental types are GaugeVec, CounterVec, and SummaryVec.
//
// Those are all the parts needed for basic usage. Detailed documentation and
// examples are provided below.
//
// Everything else this package offers is essentially for "power users" only. A
// few pointers to "power user features":
//
// All the various ...Opts structs have a ConstLabels field for labels that
// never change their value (which is only useful under special circumstances,
// see documentation of the Opts type).
//
// The Untyped metric behaves like a Gauge, but signals the Prometheus server
// not to assume anything about its type.
//
// Functions to fine-tune how the metric registry works: EnableCollectChecks,
// PanicOnCollectError, Register, Unregister, SetMetricFamilyInjectionHook.
//
// For custom metric collection, there are two entry points: Custom Metric
// implementations and custom Collector implementations. A Metric is the
// fundamental unit in the Prometheus data model: a sample at a point in time
// together with its meta-data (like its fully-qualified name and any number of
// pairs of label name and label value) that knows how to marshal itself into a
// data transfer object (aka DTO, implemented as a protocol buffer). A Collector
// gets registered with the Prometheus registry and manages the collection of
// one or more Metrics. Many parts of this package are building blocks for
// Metrics and Collectors. Desc is the metric descriptor, actually used by all
// metrics under the hood, and by Collectors to describe the Metrics to be
// collected, but only to be dealt with by users if they implement their own
// Metrics or Collectors. To create a Desc, the BuildFQName function will come
// in handy. Other useful components for Metric and Collector implementation
// include: LabelPairSorter to sort the DTO version of label pairs,
// NewConstMetric and MustNewConstMetric to create "throw away" Metrics at
// collection time, MetricVec to bundle custom Metrics into a metric vector
// Collector, SelfCollector to make a custom Metric collect itself.
//
// A good example for a custom Collector is the ExpVarCollector included in this
// package, which exports variables exported via the "expvar" package as
// Prometheus metrics.
package prometheus

View File

@ -0,0 +1,130 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus_test
import (
"sync"
"github.com/prometheus/client_golang/prometheus"
)
// ClusterManager is an example for a system that might have been built without
// Prometheus in mind. It models a central manager of jobs running in a
// cluster. To turn it into something that collects Prometheus metrics, we
// simply add the two methods required for the Collector interface.
//
// An additional challenge is that multiple instances of the ClusterManager are
// run within the same binary, each in charge of a different zone. We need to
// make use of ConstLabels to be able to register each ClusterManager instance
// with Prometheus.
type ClusterManager struct {
Zone string
OOMCount *prometheus.CounterVec
RAMUsage *prometheus.GaugeVec
mtx sync.Mutex // Protects OOMCount and RAMUsage.
// ... many more fields
}
// ReallyExpensiveAssessmentOfTheSystemState is a mock for the data gathering a
// real cluster manager would have to do. Since it may actually be really
// expensive, it must only be called once per collection. This implementation,
// obviously, only returns some made-up data.
func (c *ClusterManager) ReallyExpensiveAssessmentOfTheSystemState() (
oomCountByHost map[string]int, ramUsageByHost map[string]float64,
) {
// Just example fake data.
oomCountByHost = map[string]int{
"foo.example.org": 42,
"bar.example.org": 2001,
}
ramUsageByHost = map[string]float64{
"foo.example.org": 6.023e23,
"bar.example.org": 3.14,
}
return
}
// Describe faces the interesting challenge that the two metric vectors that are
// used in this example are already Collectors themselves. However, thanks to
// the use of channels, it is really easy to "chain" Collectors. Here we simply
// call the Describe methods of the two metric vectors.
func (c *ClusterManager) Describe(ch chan<- *prometheus.Desc) {
c.OOMCount.Describe(ch)
c.RAMUsage.Describe(ch)
}
// Collect first triggers the ReallyExpensiveAssessmentOfTheSystemState. Then it
// sets the retrieved values in the two metric vectors and then sends all their
// metrics to the channel (again using a chaining technique as in the Describe
// method). Since Collect could be called multiple times concurrently, that part
// is protected by a mutex.
func (c *ClusterManager) Collect(ch chan<- prometheus.Metric) {
oomCountByHost, ramUsageByHost := c.ReallyExpensiveAssessmentOfTheSystemState()
c.mtx.Lock()
defer c.mtx.Unlock()
for host, oomCount := range oomCountByHost {
c.OOMCount.WithLabelValues(host).Set(float64(oomCount))
}
for host, ramUsage := range ramUsageByHost {
c.RAMUsage.WithLabelValues(host).Set(ramUsage)
}
c.OOMCount.Collect(ch)
c.RAMUsage.Collect(ch)
// All metrics in OOMCount and RAMUsage are sent to the channel now. We
// can safely reset the two metric vectors now, so that we can start
// fresh in the next Collect cycle. (Imagine a host disappears from the
// cluster. If we did not reset here, its Metric would stay in the
// metric vectors forever.)
c.OOMCount.Reset()
c.RAMUsage.Reset()
}
// NewClusterManager creates the two metric vectors OOMCount and RAMUsage. Note
// that the zone is set as a ConstLabel. (It's different in each instance of the
// ClusterManager, but constant over the lifetime of an instance.) The reported
// values are partitioned by host, which is therefore a variable label.
func NewClusterManager(zone string) *ClusterManager {
return &ClusterManager{
Zone: zone,
OOMCount: prometheus.NewCounterVec(
prometheus.CounterOpts{
Subsystem: "clustermanager",
Name: "oom_count",
Help: "number of OOM crashes",
ConstLabels: prometheus.Labels{"zone": zone},
},
[]string{"host"},
),
RAMUsage: prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Subsystem: "clustermanager",
Name: "ram_usage_bytes",
Help: "RAM usage as reported to the cluster manager",
ConstLabels: prometheus.Labels{"zone": zone},
},
[]string{"host"},
),
}
}
func ExampleCollector_clustermanager() {
workerDB := NewClusterManager("db")
workerCA := NewClusterManager("ca")
prometheus.MustRegister(workerDB)
prometheus.MustRegister(workerCA)
// Since we are dealing with custom Collector implementations, it might
// be a good idea to enable the collect checks in the registry.
prometheus.EnableCollectChecks(true)
}

View File

@ -0,0 +1,87 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus_test
import (
"runtime"
"github.com/prometheus/client_golang/prometheus"
)
var (
allocDesc = prometheus.NewDesc(
prometheus.BuildFQName("", "memstats", "alloc_bytes"),
"bytes allocated and still in use",
nil, nil,
)
totalAllocDesc = prometheus.NewDesc(
prometheus.BuildFQName("", "memstats", "total_alloc_bytes"),
"bytes allocated (even if freed)",
nil, nil,
)
numGCDesc = prometheus.NewDesc(
prometheus.BuildFQName("", "memstats", "num_gc_total"),
"number of GCs run",
nil, nil,
)
)
// MemStatsCollector is an example for a custom Collector that solves the
// problem of feeding into multiple metrics at the same time. The
// runtime.ReadMemStats should happen only once, and then the results need to be
// fed into a number of separate Metrics. In this example, only a few of the
// values reported by ReadMemStats are used. For each, there is a Desc provided
// as a var, so the MemStatsCollector itself needs nothing else in the
// struct. Only the methods need to be implemented.
type MemStatsCollector struct{}
// Describe just sends the three Desc objects for the Metrics we intend to
// collect.
func (_ MemStatsCollector) Describe(ch chan<- *prometheus.Desc) {
ch <- allocDesc
ch <- totalAllocDesc
ch <- numGCDesc
}
// Collect does the trick by calling ReadMemStats once and then constructing
// three different Metrics on the fly.
func (_ MemStatsCollector) Collect(ch chan<- prometheus.Metric) {
var ms runtime.MemStats
runtime.ReadMemStats(&ms)
ch <- prometheus.MustNewConstMetric(
allocDesc,
prometheus.GaugeValue,
float64(ms.Alloc),
)
ch <- prometheus.MustNewConstMetric(
totalAllocDesc,
prometheus.GaugeValue,
float64(ms.TotalAlloc),
)
ch <- prometheus.MustNewConstMetric(
numGCDesc,
prometheus.CounterValue,
float64(ms.NumGC),
)
// To avoid new allocations on each collection, you could also keep
// metric objects around and return the same objects each time, just
// with new values set.
}
func ExampleCollector_memstats() {
prometheus.MustRegister(&MemStatsCollector{})
// Since we are dealing with custom Collector implementations, it might
// be a good idea to enable the collect checks in the registry.
prometheus.EnableCollectChecks(true)
}

View File

@ -0,0 +1,69 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus_test
import (
"runtime"
"code.google.com/p/goprotobuf/proto"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/client_golang/prometheus"
)
func NewCallbackMetric(desc *prometheus.Desc, callback func() float64) *CallbackMetric {
result := &CallbackMetric{desc: desc, callback: callback}
result.Init(result) // Initialize the SelfCollector.
return result
}
// TODO: Come up with a better example.
// CallbackMetric is an example for a user-defined Metric that exports the
// result of a function call as a metric of type "untyped" without any
// labels. It uses SelfCollector to turn the Metric into a Collector so that it
// can be registered with Prometheus.
//
// Note that this example is pretty much academic as the prometheus package
// already provides an UntypedFunc type.
type CallbackMetric struct {
prometheus.SelfCollector
desc *prometheus.Desc
callback func() float64
}
func (cm *CallbackMetric) Desc() *prometheus.Desc {
return cm.desc
}
func (cm *CallbackMetric) Write(m *dto.Metric) error {
m.Untyped = &dto.Untyped{Value: proto.Float64(cm.callback())}
return nil
}
func ExampleSelfCollector() {
m := NewCallbackMetric(
prometheus.NewDesc(
"runtime_goroutines_count",
"Total number of goroutines that currently exist.",
nil, nil, // No labels, these must be nil.
),
func() float64 {
return float64(runtime.NumGoroutine())
},
)
prometheus.MustRegister(m)
}

View File

@ -0,0 +1,454 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus_test
import (
"flag"
"fmt"
"math"
"net/http"
"runtime"
"sort"
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/prometheus/client_golang/prometheus"
)
func ExampleGauge() {
opsQueued := prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: "our_company",
Subsystem: "blob_storage",
Name: "ops_queued",
Help: "Number of blob storage operations waiting to be processed.",
})
prometheus.MustRegister(opsQueued)
// 10 operations queued by the goroutine managing incoming requests.
opsQueued.Add(10)
// A worker goroutine has picked up a waiting operation.
opsQueued.Dec()
// And once more...
opsQueued.Dec()
}
func ExampleGaugeVec() {
binaryVersion := flag.String("binary_version", "debug", "Version of the binary: debug, canary, production.")
flag.Parse()
opsQueued := prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Namespace: "our_company",
Subsystem: "blob_storage",
Name: "ops_queued",
Help: "Number of blob storage operations waiting to be processed, partitioned by user and type.",
ConstLabels: prometheus.Labels{"binary_version": *binaryVersion},
},
[]string{
// Which user has requested the operation?
"user",
// Of what type is the operation?
"type",
},
)
prometheus.MustRegister(opsQueued)
// Increase a value using compact (but order-sensitive!) WithLabelValues().
opsQueued.WithLabelValues("bob", "put").Add(4)
// Increase a value with a map using WithLabels. More verbose, but order
// doesn't matter anymore.
opsQueued.With(prometheus.Labels{"type": "delete", "user": "alice"}).Inc()
}
func ExampleGaugeFunc() {
if err := prometheus.Register(prometheus.NewGaugeFunc(
prometheus.GaugeOpts{
Subsystem: "runtime",
Name: "goroutines_count",
Help: "Number of goroutines that currently exist.",
},
func() float64 { return float64(runtime.NumGoroutine()) },
)); err == nil {
fmt.Println("GaugeFunc 'goroutines_count' registered.")
}
// Note that the count of goroutines is a gauge (and not a counter) as
// it can go up and down.
// Output:
// GaugeFunc 'goroutines_count' registered.
}
func ExampleCounter() {
pushCounter := prometheus.NewCounter(prometheus.CounterOpts{
Name: "repository_pushes", // Note: No help string...
})
err := prometheus.Register(pushCounter) // ... so this will return an error.
if err != nil {
fmt.Println("Push counter couldn't be registered, no counting will happen:", err)
return
}
// Try it once more, this time with a help string.
pushCounter = prometheus.NewCounter(prometheus.CounterOpts{
Name: "repository_pushes",
Help: "Number of pushes to external repository.",
})
err = prometheus.Register(pushCounter)
if err != nil {
fmt.Println("Push counter couldn't be registered AGAIN, no counting will happen:", err)
return
}
pushComplete := make(chan struct{})
// TODO: Start a goroutine that performs repository pushes and reports
// each completion via the channel.
for _ = range pushComplete {
pushCounter.Inc()
}
// Output:
// Push counter couldn't be registered, no counting will happen: descriptor Desc{fqName: "repository_pushes", help: "", constLabels: {}, variableLabels: []} is invalid: empty help string
}
func ExampleCounterVec() {
binaryVersion := flag.String("environment", "test", "Execution environment: test, staging, production.")
flag.Parse()
httpReqs := prometheus.NewCounterVec(
prometheus.CounterOpts{
Name: "http_requests_total",
Help: "How many HTTP requests processed, partitioned by status code and http method.",
ConstLabels: prometheus.Labels{"env": *binaryVersion},
},
[]string{"code", "method"},
)
prometheus.MustRegister(httpReqs)
httpReqs.WithLabelValues("404", "POST").Add(42)
// If you have to access the same set of labels very frequently, it
// might be good to retrieve the metric only once and keep a handle to
// it. But beware of deletion of that metric, see below!
m := httpReqs.WithLabelValues("200", "GET")
for i := 0; i < 1000000; i++ {
m.Inc()
}
// Delete a metric from the vector. If you have previously kept a handle
// to that metric (as above), future updates via that handle will go
// unseen (even if you re-create a metric with the same label set
// later).
httpReqs.DeleteLabelValues("200", "GET")
// Same thing with the more verbose Labels syntax.
httpReqs.Delete(prometheus.Labels{"method": "GET", "code": "200"})
}
func ExampleInstrumentHandler() {
// Handle the "/doc" endpoint with the standard http.FileServer handler.
// By wrapping the handler with InstrumentHandler, request count,
// request and response sizes, and request latency are automatically
// exported to Prometheus, partitioned by HTTP status code and method
// and by the handler name (here "fileserver").
http.Handle("/doc", prometheus.InstrumentHandler(
"fileserver", http.FileServer(http.Dir("/usr/share/doc")),
))
// The Prometheus handler still has to be registered to handle the
// "/metrics" endpoint. The handler returned by prometheus.Handler() is
// already instrumented - with "prometheus" as the handler name. In this
// example, we want the handler name to be "metrics", so we instrument
// the uninstrumented Prometheus handler ourselves.
http.Handle("/metrics", prometheus.InstrumentHandler(
"metrics", prometheus.UninstrumentedHandler(),
))
}
func ExampleLabelPairSorter() {
labelPairs := []*dto.LabelPair{
&dto.LabelPair{Name: proto.String("status"), Value: proto.String("404")},
&dto.LabelPair{Name: proto.String("method"), Value: proto.String("get")},
}
sort.Sort(prometheus.LabelPairSorter(labelPairs))
fmt.Println(labelPairs)
// Output:
// [name:"method" value:"get" name:"status" value:"404" ]
}
func ExampleRegister() {
// Imagine you have a worker pool and want to count the tasks completed.
taskCounter := prometheus.NewCounter(prometheus.CounterOpts{
Subsystem: "worker_pool",
Name: "completed_tasks_total",
Help: "Total number of tasks completed.",
})
// This will register fine.
if err := prometheus.Register(taskCounter); err != nil {
fmt.Println(err)
} else {
fmt.Println("taskCounter registered.")
}
// Don't forget to tell the HTTP server about the Prometheus handler.
// (In a real program, you still need to start the http server...)
http.Handle("/metrics", prometheus.Handler())
// Now you can start workers and give every one of them a pointer to
// taskCounter and let it increment it whenever it completes a task.
taskCounter.Inc() // This has to happen somewhere in the worker code.
// But wait, you want to see how individual workers perform. So you need
// a vector of counters, with one element for each worker.
taskCounterVec := prometheus.NewCounterVec(
prometheus.CounterOpts{
Subsystem: "worker_pool",
Name: "completed_tasks_total",
Help: "Total number of tasks completed.",
},
[]string{"worker_id"},
)
// Registering will fail because we already have a metric of that name.
if err := prometheus.Register(taskCounterVec); err != nil {
fmt.Println("taskCounterVec not registered:", err)
} else {
fmt.Println("taskCounterVec registered.")
}
// To fix, first unregister the old taskCounter.
if prometheus.Unregister(taskCounter) {
fmt.Println("taskCounter unregistered.")
}
// Try registering taskCounterVec again.
if err := prometheus.Register(taskCounterVec); err != nil {
fmt.Println("taskCounterVec not registered:", err)
} else {
fmt.Println("taskCounterVec registered.")
}
// Bummer! Still doesn't work.
// Prometheus will not allow you to ever export metrics with
// inconsistent help strings or label names. After unregistering, the
// unregistered metrics will cease to show up in the /metrics http
// response, but the registry still remembers that those metrics had
// been exported before. For this example, we will now choose a
// different name. (In a real program, you would obviously not export
// the obsolete metric in the first place.)
taskCounterVec = prometheus.NewCounterVec(
prometheus.CounterOpts{
Subsystem: "worker_pool",
Name: "completed_tasks_by_id",
Help: "Total number of tasks completed.",
},
[]string{"worker_id"},
)
if err := prometheus.Register(taskCounterVec); err != nil {
fmt.Println("taskCounterVec not registered:", err)
} else {
fmt.Println("taskCounterVec registered.")
}
// Finally it worked!
// The workers have to tell taskCounterVec their id to increment the
// right element in the metric vector.
taskCounterVec.WithLabelValues("42").Inc() // Code from worker 42.
// Each worker could also keep a reference to their own counter element
// around. Pick the counter at initialization time of the worker.
myCounter := taskCounterVec.WithLabelValues("42") // From worker 42 initialization code.
myCounter.Inc() // Somewhere in the code of that worker.
// Note that something like WithLabelValues("42", "spurious arg") would
// panic (because you have provided too many label values). If you want
// to get an error instead, use GetMetricWithLabelValues(...) instead.
notMyCounter, err := taskCounterVec.GetMetricWithLabelValues("42", "spurious arg")
if err != nil {
fmt.Println("Worker initialization failed:", err)
}
if notMyCounter == nil {
fmt.Println("notMyCounter is nil.")
}
// A different (and somewhat tricky) approach is to use
// ConstLabels. ConstLabels are pairs of label names and label values
// that never change. You might ask what those labels are good for (and
// rightfully so - if they never change, they could as well be part of
// the metric name). There are essentially two use-cases: The first is
// if labels are constant throughout the lifetime of a binary execution,
// but they vary over time or between different instances of a running
// binary. The second is what we have here: Each worker creates and
// registers an own Counter instance where the only difference is in the
// value of the ConstLabels. Those Counters can all be registered
// because the different ConstLabel values guarantee that each worker
// will increment a different Counter metric.
counterOpts := prometheus.CounterOpts{
Subsystem: "worker_pool",
Name: "completed_tasks",
Help: "Total number of tasks completed.",
ConstLabels: prometheus.Labels{"worker_id": "42"},
}
taskCounterForWorker42 := prometheus.NewCounter(counterOpts)
if err := prometheus.Register(taskCounterForWorker42); err != nil {
fmt.Println("taskCounterVForWorker42 not registered:", err)
} else {
fmt.Println("taskCounterForWorker42 registered.")
}
// Obviously, in real code, taskCounterForWorker42 would be a member
// variable of a worker struct, and the "42" would be retrieved with a
// GetId() method or something. The Counter would be created and
// registered in the initialization code of the worker.
// For the creation of the next Counter, we can recycle
// counterOpts. Just change the ConstLabels.
counterOpts.ConstLabels = prometheus.Labels{"worker_id": "2001"}
taskCounterForWorker2001 := prometheus.NewCounter(counterOpts)
if err := prometheus.Register(taskCounterForWorker2001); err != nil {
fmt.Println("taskCounterVForWorker2001 not registered:", err)
} else {
fmt.Println("taskCounterForWorker2001 registered.")
}
taskCounterForWorker2001.Inc()
taskCounterForWorker42.Inc()
taskCounterForWorker2001.Inc()
// Yet another approach would be to turn the workers themselves into
// Collectors and register them. See the Collector example for details.
// Output:
// taskCounter registered.
// taskCounterVec not registered: a previously registered descriptor with the same fully-qualified name as Desc{fqName: "worker_pool_completed_tasks_total", help: "Total number of tasks completed.", constLabels: {}, variableLabels: [worker_id]} has different label names or a different help string
// taskCounter unregistered.
// taskCounterVec not registered: a previously registered descriptor with the same fully-qualified name as Desc{fqName: "worker_pool_completed_tasks_total", help: "Total number of tasks completed.", constLabels: {}, variableLabels: [worker_id]} has different label names or a different help string
// taskCounterVec registered.
// Worker initialization failed: inconsistent label cardinality
// notMyCounter is nil.
// taskCounterForWorker42 registered.
// taskCounterForWorker2001 registered.
}
func ExampleSummary() {
temps := prometheus.NewSummary(prometheus.SummaryOpts{
Name: "pond_temperature_celsius",
Help: "The temperature of the frog pond.", // Sorry, we can't measure how badly it smells.
})
// Simulate some observations.
for i := 0; i < 1000; i++ {
temps.Observe(30 + math.Floor(120*math.Sin(float64(i)*0.1))/10)
}
// Just for demonstration, let's check the state of the summary by
// (ab)using its Write method (which is usually only used by Prometheus
// internally).
metric := &dto.Metric{}
temps.Write(metric)
fmt.Println(proto.MarshalTextString(metric))
// Output:
// summary: <
// sample_count: 1000
// sample_sum: 29969.50000000001
// quantile: <
// quantile: 0.5
// value: 31.1
// >
// quantile: <
// quantile: 0.9
// value: 41.3
// >
// quantile: <
// quantile: 0.99
// value: 41.9
// >
// >
}
func ExampleSummaryVec() {
temps := prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Name: "pond_temperature_celsius",
Help: "The temperature of the frog pond.", // Sorry, we can't measure how badly it smells.
},
[]string{"species"},
)
// Simulate some observations.
for i := 0; i < 1000; i++ {
temps.WithLabelValues("litoria-caerulea").Observe(30 + math.Floor(120*math.Sin(float64(i)*0.1))/10)
temps.WithLabelValues("lithobates-catesbeianus").Observe(32 + math.Floor(100*math.Cos(float64(i)*0.11))/10)
}
// Just for demonstration, let's check the state of the summary vector
// by (ab)using its Collect method and the Write method of its elements
// (which is usually only used by Prometheus internally - code like the
// following will never appear in your own code).
metricChan := make(chan prometheus.Metric)
go func() {
defer close(metricChan)
temps.Collect(metricChan)
}()
metricStrings := []string{}
for metric := range metricChan {
dtoMetric := &dto.Metric{}
metric.Write(dtoMetric)
metricStrings = append(metricStrings, proto.MarshalTextString(dtoMetric))
}
sort.Strings(metricStrings) // For reproducible print order.
fmt.Println(metricStrings)
// Output:
// [label: <
// name: "species"
// value: "lithobates-catesbeianus"
// >
// summary: <
// sample_count: 1000
// sample_sum: 31956.100000000017
// quantile: <
// quantile: 0.5
// value: 32.4
// >
// quantile: <
// quantile: 0.9
// value: 41.4
// >
// quantile: <
// quantile: 0.99
// value: 41.9
// >
// >
// label: <
// name: "species"
// value: "litoria-caerulea"
// >
// summary: <
// sample_count: 1000
// sample_sum: 29969.50000000001
// quantile: <
// quantile: 0.5
// value: 31.1
// >
// quantile: <
// quantile: 0.9
// value: 41.3
// >
// quantile: <
// quantile: 0.99
// value: 41.9
// >
// >
// ]
}

View File

@ -0,0 +1,119 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"encoding/json"
"expvar"
)
// ExpvarCollector collects metrics from the expvar interface. It provides a
// quick way to expose numeric values that are already exported via expvar as
// Prometheus metrics. Note that the data models of expvar and Prometheus are
// fundamentally different, and that the ExpvarCollector is inherently
// slow. Thus, the ExpvarCollector is probably great for experiments and
// prototying, but you should seriously consider a more direct implementation of
// Prometheus metrics for monitoring production systems.
//
// Use NewExpvarCollector to create new instances.
type ExpvarCollector struct {
exports map[string]*Desc
}
// NewExpvarCollector returns a newly allocated ExpvarCollector that still has
// to be registered with the Prometheus registry.
//
// The exports map has the following meaning:
//
// The keys in the map correspond to expvar keys, i.e. for every expvar key you
// want to export as Prometheus metric, you need an entry in the exports
// map. The descriptor mapped to each key describes how to export the expvar
// value. It defines the name and the help string of the Prometheus metric
// proxying the expvar value. The type will always be Untyped.
//
// For descriptors without variable labels, the expvar value must be a number or
// a bool. The number is then directly exported as the Prometheus sample
// value. (For a bool, 'false' translates to 0 and 'true' to 1). Expvar values
// that are not numbers or bools are silently ignored.
//
// If the descriptor has one variable label, the expvar value must be an expvar
// map. The keys in the expvar map become the various values of the one
// Prometheus label. The values in the expvar map must be numbers or bools again
// as above.
//
// For descriptors with more than one variable label, the expvar must be a
// nested expvar map, i.e. where the values of the topmost map are maps again
// etc. until a depth is reached that corresponds to the number of labels. The
// leaves of that structure must be numbers or bools as above to serve as the
// sample values.
//
// Anything that does not fit into the scheme above is silently ignored.
func NewExpvarCollector(exports map[string]*Desc) *ExpvarCollector {
return &ExpvarCollector{
exports: exports,
}
}
// Describe implements Collector.
func (e *ExpvarCollector) Describe(ch chan<- *Desc) {
for _, desc := range e.exports {
ch <- desc
}
}
// Collect implements Collector.
func (e *ExpvarCollector) Collect(ch chan<- Metric) {
for name, desc := range e.exports {
var m Metric
expVar := expvar.Get(name)
if expVar == nil {
continue
}
var v interface{}
labels := make([]string, len(desc.variableLabels))
if err := json.Unmarshal([]byte(expVar.String()), &v); err != nil {
ch <- NewInvalidMetric(desc, err)
continue
}
var processValue func(v interface{}, i int)
processValue = func(v interface{}, i int) {
if i >= len(labels) {
copiedLabels := append(make([]string, 0, len(labels)), labels...)
switch v := v.(type) {
case float64:
m = MustNewConstMetric(desc, UntypedValue, v, copiedLabels...)
case bool:
if v {
m = MustNewConstMetric(desc, UntypedValue, 1, copiedLabels...)
} else {
m = MustNewConstMetric(desc, UntypedValue, 0, copiedLabels...)
}
default:
return
}
ch <- m
return
}
vm, ok := v.(map[string]interface{})
if !ok {
return
}
for lv, val := range vm {
labels[i] = lv
processValue(val, i+1)
}
}
processValue(v, 0)
}
}

View File

@ -0,0 +1,97 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus_test
import (
"expvar"
"fmt"
"sort"
"strings"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/client_golang/prometheus"
)
func ExampleExpvarCollector() {
expvarCollector := prometheus.NewExpvarCollector(map[string]*prometheus.Desc{
"memstats": prometheus.NewDesc(
"expvar_memstats",
"All numeric memstats as one metric family. Not a good role-model, actually... ;-)",
[]string{"type"}, nil,
),
"lone-int": prometheus.NewDesc(
"expvar_lone_int",
"Just an expvar int as an example.",
nil, nil,
),
"http-request-map": prometheus.NewDesc(
"expvar_http_request_total",
"How many http requests processed, partitioned by status code and http method.",
[]string{"code", "method"}, nil,
),
})
prometheus.MustRegister(expvarCollector)
// The Prometheus part is done here. But to show that this example is
// doing anything, we have to manually export something via expvar. In
// real-life use-cases, some library would already have exported via
// expvar what we want to re-export as Prometheus metrics.
expvar.NewInt("lone-int").Set(42)
expvarMap := expvar.NewMap("http-request-map")
var (
expvarMap1, expvarMap2 expvar.Map
expvarInt11, expvarInt12, expvarInt21, expvarInt22 expvar.Int
)
expvarMap1.Init()
expvarMap2.Init()
expvarInt11.Set(3)
expvarInt12.Set(13)
expvarInt21.Set(11)
expvarInt22.Set(212)
expvarMap1.Set("POST", &expvarInt11)
expvarMap1.Set("GET", &expvarInt12)
expvarMap2.Set("POST", &expvarInt21)
expvarMap2.Set("GET", &expvarInt22)
expvarMap.Set("404", &expvarMap1)
expvarMap.Set("200", &expvarMap2)
// Results in the following expvar map:
// "http-request-count": {"200": {"POST": 11, "GET": 212}, "404": {"POST": 3, "GET": 13}}
// Let's see what the scrape would yield, but exclude the memstats metrics.
metricStrings := []string{}
metric := dto.Metric{}
metricChan := make(chan prometheus.Metric)
go func() {
expvarCollector.Collect(metricChan)
close(metricChan)
}()
for m := range metricChan {
if strings.Index(m.Desc().String(), "expvar_memstats") == -1 {
metric.Reset()
m.Write(&metric)
metricStrings = append(metricStrings, metric.String())
}
}
sort.Strings(metricStrings)
for _, s := range metricStrings {
fmt.Println(strings.TrimRight(s, " "))
}
// Output:
// label:<name:"code" value:"200" > label:<name:"method" value:"GET" > untyped:<value:212 >
// label:<name:"code" value:"200" > label:<name:"method" value:"POST" > untyped:<value:11 >
// label:<name:"code" value:"404" > label:<name:"method" value:"GET" > untyped:<value:13 >
// label:<name:"code" value:"404" > label:<name:"method" value:"POST" > untyped:<value:3 >
// untyped:<value:42 >
}

View File

@ -0,0 +1,147 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import "hash/fnv"
// Gauge is a Metric that represents a single numerical value that can
// arbitrarily go up and down.
//
// A Gauge is typically used for measured values like temperatures or current
// memory usage, but also "counts" that can go up and down, like the number of
// running goroutines.
//
// To create Gauge instances, use NewGauge.
type Gauge interface {
Metric
Collector
// Set sets the Gauge to an arbitrary value.
Set(float64)
// Inc increments the Gauge by 1.
Inc()
// Dec decrements the Gauge by 1.
Dec()
// Add adds the given value to the Gauge. (The value can be
// negative, resulting in a decrease of the Gauge.)
Add(float64)
// Sub subtracts the given value from the Gauge. (The value can be
// negative, resulting in an increase of the Gauge.)
Sub(float64)
}
// GaugeOpts is an alias for Opts. See there for doc comments.
type GaugeOpts Opts
// NewGauge creates a new Gauge based on the provided GaugeOpts.
func NewGauge(opts GaugeOpts) Gauge {
return newValue(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), GaugeValue, 0)
}
// GaugeVec is a Collector that bundles a set of Gauges that all share the same
// Desc, but have different values for their variable labels. This is used if
// you want to count the same thing partitioned by various dimensions
// (e.g. number of operations queued, partitioned by user and operation
// type). Create instances with NewGaugeVec.
type GaugeVec struct {
MetricVec
}
// NewGaugeVec creates a new GaugeVec based on the provided GaugeOpts and
// partitioned by the given label names. At least one label name must be
// provided.
func NewGaugeVec(opts GaugeOpts, labelNames []string) *GaugeVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &GaugeVec{
MetricVec: MetricVec{
children: map[uint64]Metric{},
desc: desc,
hash: fnv.New64a(),
newMetric: func(lvs ...string) Metric {
return newValue(desc, GaugeValue, 0, lvs...)
},
},
}
}
// GetMetricWithLabelValues replaces the method of the same name in
// MetricVec. The difference is that this method returns a Gauge and not a
// Metric so that no type conversion is required.
func (m *GaugeVec) GetMetricWithLabelValues(lvs ...string) (Gauge, error) {
metric, err := m.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Gauge), err
}
return nil, err
}
// GetMetricWith replaces the method of the same name in MetricVec. The
// difference is that this method returns a Gauge and not a Metric so that no
// type conversion is required.
func (m *GaugeVec) GetMetricWith(labels Labels) (Gauge, error) {
metric, err := m.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Gauge), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. By not returning an
// error, WithLabelValues allows shortcuts like
// myVec.WithLabelValues("404", "GET").Add(42)
func (m *GaugeVec) WithLabelValues(lvs ...string) Gauge {
return m.MetricVec.WithLabelValues(lvs...).(Gauge)
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. By not returning an error, With allows shortcuts like
// myVec.With(Labels{"code": "404", "method": "GET"}).Add(42)
func (m *GaugeVec) With(labels Labels) Gauge {
return m.MetricVec.With(labels).(Gauge)
}
// GaugeFunc is a Gauge whose value is determined at collect time by calling a
// provided function.
//
// To create GaugeFunc instances, use NewGaugeFunc.
type GaugeFunc interface {
Metric
Collector
}
// NewGaugeFunc creates a new GaugeFunc based on the provided GaugeOpts. The
// value reported is determined by calling the given function from within the
// Write method. Take into account that metric collection may happen
// concurrently. If that results in concurrent calls to Write, like in the case
// where a GaugeFunc is directly registered with Prometheus, the provided
// function must be concurrency-safe.
func NewGaugeFunc(opts GaugeOpts, function func() float64) GaugeFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), GaugeValue, function)
}

View File

@ -0,0 +1,182 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"math"
"math/rand"
"sync"
"testing"
"testing/quick"
dto "github.com/prometheus/client_model/go"
)
func listenGaugeStream(vals, result chan float64, done chan struct{}) {
var sum float64
outer:
for {
select {
case <-done:
close(vals)
for v := range vals {
sum += v
}
break outer
case v := <-vals:
sum += v
}
}
result <- sum
close(result)
}
func TestGaugeConcurrency(t *testing.T) {
it := func(n uint32) bool {
mutations := int(n % 10000)
concLevel := int(n%15 + 1)
var start, end sync.WaitGroup
start.Add(1)
end.Add(concLevel)
sStream := make(chan float64, mutations*concLevel)
result := make(chan float64)
done := make(chan struct{})
go listenGaugeStream(sStream, result, done)
go func() {
end.Wait()
close(done)
}()
gge := NewGauge(GaugeOpts{
Name: "test_gauge",
Help: "no help can be found here",
})
for i := 0; i < concLevel; i++ {
vals := make([]float64, mutations)
for j := 0; j < mutations; j++ {
vals[j] = rand.Float64() - 0.5
}
go func(vals []float64) {
start.Wait()
for _, v := range vals {
sStream <- v
gge.Add(v)
}
end.Done()
}(vals)
}
start.Done()
if expected, got := <-result, math.Float64frombits(gge.(*value).valBits); math.Abs(expected-got) > 0.000001 {
t.Fatalf("expected approx. %f, got %f", expected, got)
return false
}
return true
}
if err := quick.Check(it, nil); err != nil {
t.Fatal(err)
}
}
func TestGaugeVecConcurrency(t *testing.T) {
it := func(n uint32) bool {
mutations := int(n % 10000)
concLevel := int(n%15 + 1)
vecLength := int(n%5 + 1)
var start, end sync.WaitGroup
start.Add(1)
end.Add(concLevel)
sStreams := make([]chan float64, vecLength)
results := make([]chan float64, vecLength)
done := make(chan struct{})
for i := 0; i < vecLength; i++ {
sStreams[i] = make(chan float64, mutations*concLevel)
results[i] = make(chan float64)
go listenGaugeStream(sStreams[i], results[i], done)
}
go func() {
end.Wait()
close(done)
}()
gge := NewGaugeVec(
GaugeOpts{
Name: "test_gauge",
Help: "no help can be found here",
},
[]string{"label"},
)
for i := 0; i < concLevel; i++ {
vals := make([]float64, mutations)
pick := make([]int, mutations)
for j := 0; j < mutations; j++ {
vals[j] = rand.Float64() - 0.5
pick[j] = rand.Intn(vecLength)
}
go func(vals []float64) {
start.Wait()
for i, v := range vals {
sStreams[pick[i]] <- v
gge.WithLabelValues(string('A' + pick[i])).Add(v)
}
end.Done()
}(vals)
}
start.Done()
for i := range sStreams {
if expected, got := <-results[i], math.Float64frombits(gge.WithLabelValues(string('A'+i)).(*value).valBits); math.Abs(expected-got) > 0.000001 {
t.Fatalf("expected approx. %f, got %f", expected, got)
return false
}
}
return true
}
if err := quick.Check(it, nil); err != nil {
t.Fatal(err)
}
}
func TestGaugeFunc(t *testing.T) {
gf := NewGaugeFunc(
GaugeOpts{
Name: "test_name",
Help: "test help",
ConstLabels: Labels{"a": "1", "b": "2"},
},
func() float64 { return 3.1415 },
)
if expected, got := `Desc{fqName: "test_name", help: "test help", constLabels: {a="1",b="2"}, variableLabels: []}`, gf.Desc().String(); expected != got {
t.Errorf("expected %q, got %q", expected, got)
}
m := &dto.Metric{}
gf.Write(m)
if expected, got := `label:<name:"a" value:"1" > label:<name:"b" value:"2" > gauge:<value:3.1415 > `, m.String(); expected != got {
t.Errorf("expected %q, got %q", expected, got)
}
}

View File

@ -0,0 +1,31 @@
package prometheus
import (
"runtime"
)
type goCollector struct {
goroutines Gauge
}
// NewGoCollector returns a collector which exports metrics about the current
// go process.
func NewGoCollector() *goCollector {
return &goCollector{
goroutines: NewGauge(GaugeOpts{
Name: "process_goroutines",
Help: "Number of goroutines that currently exist.",
}),
}
}
// Describe returns all descriptions of the collector.
func (c *goCollector) Describe(ch chan<- *Desc) {
ch <- c.goroutines.Desc()
}
// Collect returns the current state of all metrics of the collector.
func (c *goCollector) Collect(ch chan<- Metric) {
c.goroutines.Set(float64(runtime.NumGoroutine()))
ch <- c.goroutines
}

View File

@ -0,0 +1,58 @@
package prometheus
import (
"reflect"
"testing"
"time"
dto "github.com/prometheus/client_model/go"
)
func TestGoCollector(t *testing.T) {
var (
c = NewGoCollector()
ch = make(chan Metric)
waitc = make(chan struct{})
closec = make(chan struct{})
old = -1
)
defer close(closec)
go func() {
c.Collect(ch)
go func(c <-chan struct{}) {
<-c
}(closec)
<-waitc
c.Collect(ch)
}()
for {
select {
case metric := <-ch:
switch m := metric.(type) {
// Attention, this also catches Counter...
case Gauge:
pb := &dto.Metric{}
m.Write(pb)
if old == -1 {
old = int(pb.GetGauge().GetValue())
close(waitc)
continue
}
if diff := int(pb.GetGauge().GetValue()) - old; diff != 1 {
// TODO: This is flaky in highly concurrent situations.
t.Errorf("want 1 new goroutine, got %d", diff)
}
return
default:
t.Errorf("want type Gauge, got %s", reflect.TypeOf(metric))
}
case <-time.After(1 * time.Second):
t.Fatalf("expected collect timed out")
}
}
}

View File

@ -0,0 +1,322 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"net/http"
"strconv"
"strings"
"time"
)
var instLabels = []string{"method", "code"}
type nower interface {
Now() time.Time
}
type nowFunc func() time.Time
func (n nowFunc) Now() time.Time {
return n()
}
var now nower = nowFunc(func() time.Time {
return time.Now()
})
func nowSeries(t ...time.Time) nower {
return nowFunc(func() time.Time {
defer func() {
t = t[1:]
}()
return t[0]
})
}
// InstrumentHandler wraps the given HTTP handler for instrumentation. It
// registers four metric collectors (if not already done) and reports http
// metrics to the (newly or already) registered collectors: http_requests_total
// (CounterVec), http_request_duration_microseconds (Summary),
// http_request_size_bytes (Summary), http_response_size_bytes (Summary). Each
// has a constant label named "handler" with the provided handlerName as
// value. http_requests_total is a metric vector partitioned by HTTP method
// (label name "method") and HTTP status code (label name "code").
func InstrumentHandler(handlerName string, handler http.Handler) http.HandlerFunc {
return InstrumentHandlerFunc(handlerName, handler.ServeHTTP)
}
// InstrumentHandlerFunc wraps the given function for instrumentation. It
// otherwise works in the same way as InstrumentHandler.
func InstrumentHandlerFunc(handlerName string, handlerFunc func(http.ResponseWriter, *http.Request)) http.HandlerFunc {
return InstrumentHandlerFuncWithOpts(
SummaryOpts{
Subsystem: "http",
ConstLabels: Labels{"handler": handlerName},
},
handlerFunc,
)
}
// InstrumentHandlerWithOpts works like InstrumentHandler but provides more
// flexibility (at the cost of a more complex call syntax). As
// InstrumentHandler, this function registers four metric collectors, but it
// uses the provided SummaryOpts to create them. However, the fields "Name" and
// "Help" in the SummaryOpts are ignored. "Name" is replaced by
// "requests_total", "request_duration_microseconds", "request_size_bytes", and
// "response_size_bytes", respectively. "Help" is replaced by an appropriate
// help string. The names of the variable labels of the http_requests_total
// CounterVec are "method" (get, post, etc.), and "code" (HTTP status code).
//
// If InstrumentHandlerWithOpts is called as follows, it mimics exactly the
// behavior of InstrumentHandler:
//
// prometheus.InstrumentHandlerWithOpts(
// prometheus.SummaryOpts{
// Subsystem: "http",
// ConstLabels: prometheus.Labels{"handler": handlerName},
// },
// handler,
// )
//
// Technical detail: "requests_total" is a CounterVec, not a SummaryVec, so it
// cannot use SummaryOpts. Instead, a CounterOpts struct is created internally,
// and all its fields are set to the equally named fields in the provided
// SummaryOpts.
func InstrumentHandlerWithOpts(opts SummaryOpts, handler http.Handler) http.HandlerFunc {
return InstrumentHandlerFuncWithOpts(opts, handler.ServeHTTP)
}
// InstrumentHandlerFuncWithOpts works like InstrumentHandlerFunc but provides
// more flexibility (at the cost of a more complex call syntax). See
// InstrumentHandlerWithOpts for details how the provided SummaryOpts are used.
func InstrumentHandlerFuncWithOpts(opts SummaryOpts, handlerFunc func(http.ResponseWriter, *http.Request)) http.HandlerFunc {
reqCnt := NewCounterVec(
CounterOpts{
Namespace: opts.Namespace,
Subsystem: opts.Subsystem,
Name: "requests_total",
Help: "Total number of HTTP requests made.",
ConstLabels: opts.ConstLabels,
},
instLabels,
)
opts.Name = "request_duration_microseconds"
opts.Help = "The HTTP request latencies in microseconds."
reqDur := NewSummary(opts)
opts.Name = "request_size_bytes"
opts.Help = "The HTTP request sizes in bytes."
reqSz := NewSummary(opts)
opts.Name = "response_size_bytes"
opts.Help = "The HTTP response sizes in bytes."
resSz := NewSummary(opts)
regReqCnt := MustRegisterOrGet(reqCnt).(*CounterVec)
regReqDur := MustRegisterOrGet(reqDur).(Summary)
regReqSz := MustRegisterOrGet(reqSz).(Summary)
regResSz := MustRegisterOrGet(resSz).(Summary)
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
now := time.Now()
delegate := &responseWriterDelegator{ResponseWriter: w}
out := make(chan int)
urlLen := 0
if r.URL != nil {
urlLen = len(r.URL.String())
}
go computeApproximateRequestSize(r, out, urlLen)
handlerFunc(delegate, r)
elapsed := float64(time.Since(now)) / float64(time.Microsecond)
method := sanitizeMethod(r.Method)
code := sanitizeCode(delegate.status)
regReqCnt.WithLabelValues(method, code).Inc()
regReqDur.Observe(elapsed)
regResSz.Observe(float64(delegate.written))
regReqSz.Observe(float64(<-out))
})
}
func computeApproximateRequestSize(r *http.Request, out chan int, s int) {
s += len(r.Method)
s += len(r.Proto)
for name, values := range r.Header {
s += len(name)
for _, value := range values {
s += len(value)
}
}
s += len(r.Host)
// N.B. r.Form and r.MultipartForm are assumed to be included in r.URL.
if r.ContentLength != -1 {
s += int(r.ContentLength)
}
out <- s
}
type responseWriterDelegator struct {
http.ResponseWriter
handler, method string
status int
written int
wroteHeader bool
}
func (r *responseWriterDelegator) WriteHeader(code int) {
r.status = code
r.wroteHeader = true
r.ResponseWriter.WriteHeader(code)
}
func (r *responseWriterDelegator) Write(b []byte) (int, error) {
if !r.wroteHeader {
r.WriteHeader(http.StatusOK)
}
n, err := r.ResponseWriter.Write(b)
r.written += n
return n, err
}
func sanitizeMethod(m string) string {
switch m {
case "GET", "get":
return "get"
case "PUT", "put":
return "put"
case "HEAD", "head":
return "head"
case "POST", "post":
return "post"
case "DELETE", "delete":
return "delete"
case "CONNECT", "connect":
return "connect"
case "OPTIONS", "options":
return "options"
case "NOTIFY", "notify":
return "notify"
default:
return strings.ToLower(m)
}
}
func sanitizeCode(s int) string {
switch s {
case 100:
return "100"
case 101:
return "101"
case 200:
return "200"
case 201:
return "201"
case 202:
return "202"
case 203:
return "203"
case 204:
return "204"
case 205:
return "205"
case 206:
return "206"
case 300:
return "300"
case 301:
return "301"
case 302:
return "302"
case 304:
return "304"
case 305:
return "305"
case 307:
return "307"
case 400:
return "400"
case 401:
return "401"
case 402:
return "402"
case 403:
return "403"
case 404:
return "404"
case 405:
return "405"
case 406:
return "406"
case 407:
return "407"
case 408:
return "408"
case 409:
return "409"
case 410:
return "410"
case 411:
return "411"
case 412:
return "412"
case 413:
return "413"
case 414:
return "414"
case 415:
return "415"
case 416:
return "416"
case 417:
return "417"
case 418:
return "418"
case 500:
return "500"
case 501:
return "501"
case 502:
return "502"
case 503:
return "503"
case 504:
return "504"
case 505:
return "505"
case 428:
return "428"
case 429:
return "429"
case 431:
return "431"
case 511:
return "511"
default:
return strconv.Itoa(s)
}
}

View File

@ -0,0 +1,121 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"net/http"
"net/http/httptest"
"testing"
"time"
dto "github.com/prometheus/client_model/go"
)
type respBody string
func (b respBody) ServeHTTP(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusTeapot)
w.Write([]byte(b))
}
func TestInstrumentHandler(t *testing.T) {
defer func(n nower) {
now = n.(nower)
}(now)
instant := time.Now()
end := instant.Add(30 * time.Second)
now = nowSeries(instant, end)
respBody := respBody("Howdy there!")
hndlr := InstrumentHandler("test-handler", respBody)
opts := SummaryOpts{
Subsystem: "http",
ConstLabels: Labels{"handler": "test-handler"},
}
reqCnt := MustRegisterOrGet(NewCounterVec(
CounterOpts{
Namespace: opts.Namespace,
Subsystem: opts.Subsystem,
Name: "requests_total",
Help: "Total number of HTTP requests made.",
ConstLabels: opts.ConstLabels,
},
instLabels,
)).(*CounterVec)
opts.Name = "request_duration_microseconds"
opts.Help = "The HTTP request latencies in microseconds."
reqDur := MustRegisterOrGet(NewSummary(opts)).(Summary)
opts.Name = "request_size_bytes"
opts.Help = "The HTTP request sizes in bytes."
MustRegisterOrGet(NewSummary(opts))
opts.Name = "response_size_bytes"
opts.Help = "The HTTP response sizes in bytes."
MustRegisterOrGet(NewSummary(opts))
reqCnt.Reset()
resp := httptest.NewRecorder()
req := &http.Request{
Method: "GET",
}
hndlr.ServeHTTP(resp, req)
if resp.Code != http.StatusTeapot {
t.Fatalf("expected status %d, got %d", http.StatusTeapot, resp.Code)
}
if string(resp.Body.Bytes()) != "Howdy there!" {
t.Fatalf("expected body %s, got %s", "Howdy there!", string(resp.Body.Bytes()))
}
out := &dto.Metric{}
reqDur.Write(out)
if want, got := "test-handler", out.Label[0].GetValue(); want != got {
t.Errorf("want label value %q in reqDur, got %q", want, got)
}
if want, got := uint64(1), out.Summary.GetSampleCount(); want != got {
t.Errorf("want sample count %d in reqDur, got %d", want, got)
}
out.Reset()
if want, got := 1, len(reqCnt.children); want != got {
t.Errorf("want %d children in reqCnt, got %d", want, got)
}
cnt, err := reqCnt.GetMetricWithLabelValues("get", "418")
if err != nil {
t.Fatal(err)
}
cnt.Write(out)
if want, got := "418", out.Label[0].GetValue(); want != got {
t.Errorf("want label value %q in reqCnt, got %q", want, got)
}
if want, got := "test-handler", out.Label[1].GetValue(); want != got {
t.Errorf("want label value %q in reqCnt, got %q", want, got)
}
if want, got := "get", out.Label[2].GetValue(); want != got {
t.Errorf("want label value %q in reqCnt, got %q", want, got)
}
if out.Counter == nil {
t.Fatal("expected non-nil counter in reqCnt")
}
if want, got := 1., out.Counter.GetValue(); want != got {
t.Errorf("want reqCnt of %f, got %f", want, got)
}
}

View File

@ -0,0 +1,164 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"strings"
dto "github.com/prometheus/client_model/go"
)
// A Metric models a single sample value with its meta data being exported to
// Prometheus. Implementers of Metric in this package inclued Gauge, Counter,
// Untyped, and Summary. Users can implement their own Metric types, but that
// should be rarely needed. See the example for SelfCollector, which is also an
// example for a user-implemented Metric.
type Metric interface {
// Desc returns the descriptor for the Metric. This method idempotently
// returns the same descriptor throughout the lifetime of the
// Metric. The returned descriptor is immutable by contract. A Metric
// unable to describe itself must return an invalid descriptor (created
// with NewInvalidDesc).
Desc() *Desc
// Write encodes the Metric into a "Metric" Protocol Buffer data
// transmission object.
//
// Implementers of custom Metric types must observe concurrency safety
// as reads of this metric may occur at any time, and any blocking
// occurs at the expense of total performance of rendering all
// registered metrics. Ideally Metric implementations should support
// concurrent readers.
//
// The Prometheus client library attempts to minimize memory allocations
// and will provide a pre-existing reset dto.Metric pointer. Prometheus
// may recycle the dto.Metric proto message, so Metric implementations
// should just populate the provided dto.Metric and then should not keep
// any reference to it.
//
// While populating dto.Metric, labels must be sorted lexicographically.
// (Implementers may find LabelPairSorter useful for that.)
Write(*dto.Metric) error
}
// Opts bundles the options for creating most Metric types. Each metric
// implementation XXX has its own XXXOpts type, but in most cases, it is just be
// an alias of this type (which might change when the requirement arises.)
//
// It is mandatory to set Name and Help to a non-empty string. All other fields
// are optional and can safely be left at their zero value.
type Opts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Metric (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the metric must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this metric. Mandatory!
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this metric. Metrics
// with the same fully-qualified name must have the same label names in
// their ConstLabels.
//
// Note that in most cases, labels have a value that varies during the
// lifetime of a process. Those labels are usually managed with a metric
// vector collector (like CounterVec, GaugeVec, UntypedVec). ConstLabels
// serve only special purposes. One is for the special case where the
// value of a label does not change during the lifetime of a process,
// e.g. if the revision of the running binary is put into a
// label. Another, more advanced purpose is if more than one Collector
// needs to collect Metrics with the same fully-qualified name. In that
// case, those Metrics must differ in the values of their
// ConstLabels. See the Collector examples.
//
// If the value of a label never changes (not even between binaries),
// that label most likely should not be a label at all (but part of the
// metric name).
ConstLabels Labels
}
// BuildFQName joins the given three name components by "_". Empty name
// components are ignored. If the name parameter itself is empty, an empty
// string is returned, no matter what. Metric implementations included in this
// library use this function internally to generate the fully-qualified metric
// name from the name component in their Opts. Users of the library will only
// need this function if they implement their own Metric or instantiate a Desc
// (with NewDesc) directly.
func BuildFQName(namespace, subsystem, name string) string {
if name == "" {
return ""
}
switch {
case namespace != "" && subsystem != "":
return strings.Join([]string{namespace, subsystem, name}, "_")
case namespace != "":
return strings.Join([]string{namespace, name}, "_")
case subsystem != "":
return strings.Join([]string{subsystem, name}, "_")
}
return name
}
// LabelPairSorter implements sort.Interface. It is used to sort a slice of
// dto.LabelPair pointers. This is useful for implementing the Write method of
// custom metrics.
type LabelPairSorter []*dto.LabelPair
func (s LabelPairSorter) Len() int {
return len(s)
}
func (s LabelPairSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s LabelPairSorter) Less(i, j int) bool {
return s[i].GetName() < s[j].GetName()
}
type hashSorter []uint64
func (s hashSorter) Len() int {
return len(s)
}
func (s hashSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s hashSorter) Less(i, j int) bool {
return s[i] < s[j]
}
type invalidMetric struct {
desc *Desc
err error
}
// NewInvalidMetric returns a metric whose Write method always returns the
// provided error. It is useful if a Collector finds itself unable to collect
// a metric and wishes to report an error to the registry.
func NewInvalidMetric(desc *Desc, err error) Metric {
return &invalidMetric{desc, err}
}
func (m *invalidMetric) Desc() *Desc { return m.desc }
func (m *invalidMetric) Write(*dto.Metric) error { return m.err }

View File

@ -0,0 +1,35 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import "testing"
func TestBuildFQName(t *testing.T) {
scenarios := []struct{ namespace, subsystem, name, result string }{
{"a", "b", "c", "a_b_c"},
{"", "b", "c", "b_c"},
{"a", "", "c", "a_c"},
{"", "", "c", "c"},
{"a", "b", "", ""},
{"a", "", "", ""},
{"", "b", "", ""},
{" ", "", "", ""},
}
for i, s := range scenarios {
if want, got := s.result, BuildFQName(s.namespace, s.subsystem, s.name); want != got {
t.Errorf("%d. want %s, got %s", i, want, got)
}
}
}

View File

@ -0,0 +1,102 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
type processCollector struct {
pid int
collectFn func(chan<- Metric)
pidFn func() (int, error)
cpuTotal Counter
openFDs, maxFDs Gauge
vsize, rss Gauge
startTime Gauge
}
// NewProcessCollector returns a collector which exports the current state of
// process metrics including cpu, memory and file descriptor usage as well as
// the process start time for the given process id under the given namespace.
func NewProcessCollector(pid int, namespace string) *processCollector {
return NewProcessCollectorPIDFn(
func() (int, error) { return pid, nil },
namespace,
)
}
// NewProcessCollectorPIDFn returns a collector which exports the current state
// of process metrics including cpu, memory and file descriptor usage as well
// as the process start time under the given namespace. The given pidFn is
// called on each collect and is used to determine the process to export
// metrics for.
func NewProcessCollectorPIDFn(
pidFn func() (int, error),
namespace string,
) *processCollector {
c := processCollector{
pidFn: pidFn,
collectFn: func(chan<- Metric) {},
cpuTotal: NewCounter(CounterOpts{
Namespace: namespace,
Name: "process_cpu_seconds_total",
Help: "Total user and system CPU time spent in seconds.",
}),
openFDs: NewGauge(GaugeOpts{
Namespace: namespace,
Name: "process_open_fds",
Help: "Number of open file descriptors.",
}),
maxFDs: NewGauge(GaugeOpts{
Namespace: namespace,
Name: "process_max_fds",
Help: "Maximum number of open file descriptors.",
}),
vsize: NewGauge(GaugeOpts{
Namespace: namespace,
Name: "process_virtual_memory_bytes",
Help: "Virtual memory size in bytes.",
}),
rss: NewGauge(GaugeOpts{
Namespace: namespace,
Name: "process_resident_memory_bytes",
Help: "Resident memory size in bytes.",
}),
startTime: NewGauge(GaugeOpts{
Namespace: namespace,
Name: "process_start_time_seconds",
Help: "Start time of the process since unix epoch in seconds.",
}),
}
// Set up process metric collection if supported by the runtime.
if processCollectSupported() {
c.collectFn = c.processCollect
}
return &c
}
// Describe returns all descriptions of the collector.
func (c *processCollector) Describe(ch chan<- *Desc) {
ch <- c.cpuTotal.Desc()
ch <- c.openFDs.Desc()
ch <- c.maxFDs.Desc()
ch <- c.vsize.Desc()
ch <- c.rss.Desc()
ch <- c.startTime.Desc()
}
// Collect returns the current state of all metrics of the collector.
func (c *processCollector) Collect(ch chan<- Metric) {
c.collectFn(ch)
}

View File

@ -0,0 +1,84 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux plan9 solaris
package prometheus
import "github.com/prometheus/procfs"
func processCollectSupported() bool {
if _, err := procfs.NewStat(); err == nil {
return true
}
return false
}
func (c *processCollector) processCollect(ch chan<- Metric) {
pid, err := c.pidFn()
if err != nil {
c.reportCollectErrors(ch, err)
return
}
p, err := procfs.NewProc(pid)
if err != nil {
c.reportCollectErrors(ch, err)
return
}
if stat, err := p.NewStat(); err != nil {
// Report collect errors for metrics depending on stat.
ch <- NewInvalidMetric(c.vsize.Desc(), err)
ch <- NewInvalidMetric(c.rss.Desc(), err)
ch <- NewInvalidMetric(c.startTime.Desc(), err)
ch <- NewInvalidMetric(c.cpuTotal.Desc(), err)
} else {
c.cpuTotal.Set(stat.CPUTime())
ch <- c.cpuTotal
c.vsize.Set(float64(stat.VirtualMemory()))
ch <- c.vsize
c.rss.Set(float64(stat.ResidentMemory()))
ch <- c.rss
if startTime, err := stat.StartTime(); err != nil {
ch <- NewInvalidMetric(c.startTime.Desc(), err)
} else {
c.startTime.Set(startTime)
ch <- c.startTime
}
}
if fds, err := p.FileDescriptorsLen(); err != nil {
ch <- NewInvalidMetric(c.openFDs.Desc(), err)
} else {
c.openFDs.Set(float64(fds))
ch <- c.openFDs
}
if limits, err := p.NewLimits(); err != nil {
ch <- NewInvalidMetric(c.maxFDs.Desc(), err)
} else {
c.maxFDs.Set(float64(limits.OpenFiles))
ch <- c.maxFDs
}
}
func (c *processCollector) reportCollectErrors(ch chan<- Metric, err error) {
ch <- NewInvalidMetric(c.cpuTotal.Desc(), err)
ch <- NewInvalidMetric(c.openFDs.Desc(), err)
ch <- NewInvalidMetric(c.maxFDs.Desc(), err)
ch <- NewInvalidMetric(c.vsize.Desc(), err)
ch <- NewInvalidMetric(c.rss.Desc(), err)
ch <- NewInvalidMetric(c.startTime.Desc(), err)
}

View File

@ -0,0 +1,24 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !linux,!plan9,!solaris
package prometheus
func processCollectSupported() bool {
return false
}
func (c *processCollector) processCollect(ch chan<- Metric) {
panic("unreachable")
}

View File

@ -0,0 +1,54 @@
package prometheus
import (
"io/ioutil"
"net/http"
"net/http/httptest"
"os"
"regexp"
"testing"
"github.com/prometheus/procfs"
)
func TestProcessCollector(t *testing.T) {
if _, err := procfs.Self(); err != nil {
t.Skipf("skipping TestProcessCollector, procfs not available: %s", err)
}
registry := newRegistry()
registry.Register(NewProcessCollector(os.Getpid(), ""))
registry.Register(NewProcessCollectorPIDFn(
func() (int, error) { return os.Getpid(), nil }, "foobar"))
s := httptest.NewServer(InstrumentHandler("prometheus", registry))
defer s.Close()
r, err := http.Get(s.URL)
if err != nil {
t.Fatal(err)
}
defer r.Body.Close()
body, err := ioutil.ReadAll(r.Body)
if err != nil {
t.Fatal(err)
}
for _, re := range []*regexp.Regexp{
regexp.MustCompile("process_cpu_seconds_total [0-9]"),
regexp.MustCompile("process_max_fds [0-9]{2,}"),
regexp.MustCompile("process_open_fds [1-9]"),
regexp.MustCompile("process_virtual_memory_bytes [1-9]"),
regexp.MustCompile("process_resident_memory_bytes [1-9]"),
regexp.MustCompile("process_start_time_seconds [0-9.]{10,}"),
regexp.MustCompile("foobar_process_cpu_seconds_total [0-9]"),
regexp.MustCompile("foobar_process_max_fds [0-9]{2,}"),
regexp.MustCompile("foobar_process_open_fds [1-9]"),
regexp.MustCompile("foobar_process_virtual_memory_bytes [1-9]"),
regexp.MustCompile("foobar_process_resident_memory_bytes [1-9]"),
regexp.MustCompile("foobar_process_start_time_seconds [0-9.]{10,}"),
} {
if !re.Match(body) {
t.Errorf("want body to match %s\n%s", re, body)
}
}
}

View File

@ -0,0 +1,721 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright (c) 2013, The Prometheus Authors
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file.
package prometheus
import (
"bytes"
"compress/gzip"
"errors"
"fmt"
"hash/fnv"
"io"
"net/http"
"net/url"
"os"
"sort"
"strings"
"sync"
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/prometheus/client_golang/_vendor/goautoneg"
"github.com/prometheus/client_golang/model"
"github.com/prometheus/client_golang/text"
)
var (
defRegistry = newDefaultRegistry()
errAlreadyReg = errors.New("duplicate metrics collector registration attempted")
)
// Constants relevant to the HTTP interface.
const (
// APIVersion is the version of the format of the exported data. This
// will match this library's version, which subscribes to the Semantic
// Versioning scheme.
APIVersion = "0.0.4"
// DelimitedTelemetryContentType is the content type set on telemetry
// data responses in delimited protobuf format.
DelimitedTelemetryContentType = `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`
// TextTelemetryContentType is the content type set on telemetry data
// responses in text format.
TextTelemetryContentType = `text/plain; version=` + APIVersion
// ProtoTextTelemetryContentType is the content type set on telemetry
// data responses in protobuf text format. (Only used for debugging.)
ProtoTextTelemetryContentType = `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=text`
// ProtoCompactTextTelemetryContentType is the content type set on
// telemetry data responses in protobuf compact text format. (Only used
// for debugging.)
ProtoCompactTextTelemetryContentType = `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=compact-text`
// Constants for object pools.
numBufs = 4
numMetricFamilies = 1000
numMetrics = 10000
// Capacity for the channel to collect metrics and descriptors.
capMetricChan = 1000
capDescChan = 10
contentTypeHeader = "Content-Type"
contentLengthHeader = "Content-Length"
contentEncodingHeader = "Content-Encoding"
acceptEncodingHeader = "Accept-Encoding"
acceptHeader = "Accept"
)
// Handler returns the HTTP handler for the global Prometheus registry. It is
// already instrumented with InstrumentHandler (using "prometheus" as handler
// name). Usually the handler is used to handle the "/metrics" endpoint.
func Handler() http.Handler {
return InstrumentHandler("prometheus", defRegistry)
}
// UninstrumentedHandler works in the same way as Handler, but the returned HTTP
// handler is not instrumented. This is useful if no instrumentation is desired
// (for whatever reason) or if the instrumentation has to happen with a
// different handler name (or with a different instrumentation approach
// altogether). See the InstrumentHandler example.
func UninstrumentedHandler() http.Handler {
return defRegistry
}
// Register registers a new Collector to be included in metrics collection. It
// returns an error if the descriptors provided by the Collector are invalid or
// if they - in combination with descriptors of already registered Collectors -
// do not fulfill the consistency and uniqueness criteria described in the Desc
// documentation.
//
// Do not register the same Collector multiple times concurrently. (Registering
// the same Collector twice would result in an error anyway, but on top of that,
// it is not safe to do so concurrently.)
func Register(m Collector) error {
_, err := defRegistry.Register(m)
return err
}
// MustRegister works like Register but panics where Register would have
// returned an error.
func MustRegister(m Collector) {
err := Register(m)
if err != nil {
panic(err)
}
}
// RegisterOrGet works like Register but does not return an error if a Collector
// is registered that equals a previously registered Collector. (Two Collectors
// are considered equal if their Describe method yields the same set of
// descriptors.) Instead, the previously registered Collector is returned (which
// is helpful if the new and previously registered Collectors are equal but not
// identical, i.e. not pointers to the same object).
//
// As for Register, it is still not safe to call RegisterOrGet with the same
// Collector multiple times concurrently.
func RegisterOrGet(m Collector) (Collector, error) {
return defRegistry.RegisterOrGet(m)
}
// MustRegisterOrGet works like Register but panics where RegisterOrGet would
// have returned an error.
func MustRegisterOrGet(m Collector) Collector {
existing, err := RegisterOrGet(m)
if err != nil {
panic(err)
}
return existing
}
// Unregister unregisters the Collector that equals the Collector passed in as
// an argument. (Two Collectors are considered equal if their Describe method
// yields the same set of descriptors.) The function returns whether a Collector
// was unregistered.
func Unregister(c Collector) bool {
return defRegistry.Unregister(c)
}
// SetMetricFamilyInjectionHook sets a function that is called whenever metrics
// are collected. The hook function must be set before metrics collection begins
// (i.e. call SetMetricFamilyInjectionHook before setting the HTTP handler.) The
// MetricFamily protobufs returned by the hook function are added to the
// delivered metrics. Each returned MetricFamily must have a unique name (also
// taking into account the MetricFamilies created in the regular way).
//
// This is a way to directly inject MetricFamily protobufs managed and owned by
// the caller. The caller has full responsibility. No sanity checks are
// performed on the returned protobufs (besides the name checks described
// above). The function must be callable at any time and concurrently.
func SetMetricFamilyInjectionHook(hook func() []*dto.MetricFamily) {
defRegistry.metricFamilyInjectionHook = hook
}
// PanicOnCollectError sets the behavior whether a panic is caused upon an error
// while metrics are collected and served to the http endpoint. By default, an
// internal server error (status code 500) is served with an error message.
func PanicOnCollectError(b bool) {
defRegistry.panicOnCollectError = b
}
// EnableCollectChecks enables (or disables) additional consistency checks
// during metrics collection. These additional checks are not enabled by default
// because they inflict a performance penalty and the errors they check for can
// only happen if the used Metric and Collector types have internal programming
// errors. It can be helpful to enable these checks while working with custom
// Collectors or Metrics whose correctness is not well established yet.
func EnableCollectChecks(b bool) {
defRegistry.collectChecksEnabled = b
}
// Push triggers a metric collection and pushes all collected metrics to the
// Pushgateway specified by addr. See the Pushgateway documentation for detailed
// implications of the job and instance parameter. instance can be left
// empty. The Pushgateway will then use the client's IP number instead. Use just
// host:port or ip:port ass addr. (Don't add 'http://' or any path.)
//
// Note that all previously pushed metrics with the same job and instance will
// be replaced with the metrics pushed by this call. (It uses HTTP method 'PUT'
// to push to the Pushgateway.)
func Push(job, instance, addr string) error {
return defRegistry.Push(job, instance, addr, "PUT")
}
// PushAdd works like Push, but only previously pushed metrics with the same
// name (and the same job and instance) will be replaced. (It uses HTTP method
// 'POST' to push to the Pushgateway.)
func PushAdd(job, instance, addr string) error {
return defRegistry.Push(job, instance, addr, "POST")
}
// encoder is a function that writes a dto.MetricFamily to an io.Writer in a
// certain encoding. It returns the number of bytes written and any error
// encountered. Note that ext.WriteDelimited and text.MetricFamilyToText are
// encoders.
type encoder func(io.Writer, *dto.MetricFamily) (int, error)
type registry struct {
mtx sync.RWMutex
collectorsByID map[uint64]Collector // ID is a hash of the descIDs.
descIDs map[uint64]struct{}
dimHashesByName map[string]uint64
bufPool chan *bytes.Buffer
metricFamilyPool chan *dto.MetricFamily
metricPool chan *dto.Metric
metricFamilyInjectionHook func() []*dto.MetricFamily
panicOnCollectError, collectChecksEnabled bool
}
func (r *registry) Register(c Collector) (Collector, error) {
descChan := make(chan *Desc, capDescChan)
go func() {
c.Describe(descChan)
close(descChan)
}()
newDescIDs := map[uint64]struct{}{}
newDimHashesByName := map[string]uint64{}
var collectorID uint64 // Just a sum of all desc IDs.
var duplicateDescErr error
r.mtx.Lock()
defer r.mtx.Unlock()
// Coduct various tests...
for desc := range descChan {
// Is the descriptor valid at all?
if desc.err != nil {
return c, fmt.Errorf("descriptor %s is invalid: %s", desc, desc.err)
}
// Is the descID unique?
// (In other words: Is the fqName + constLabel combination unique?)
if _, exists := r.descIDs[desc.id]; exists {
duplicateDescErr = fmt.Errorf("descriptor %s already exists with the same fully-qualified name and const label values", desc)
}
// If it is not a duplicate desc in this collector, add it to
// the collectorID. (We allow duplicate descs within the same
// collector, but their existence must be a no-op.)
if _, exists := newDescIDs[desc.id]; !exists {
newDescIDs[desc.id] = struct{}{}
collectorID += desc.id
}
// Are all the label names and the help string consistent with
// previous descriptors of the same name?
// First check existing descriptors...
if dimHash, exists := r.dimHashesByName[desc.fqName]; exists {
if dimHash != desc.dimHash {
return nil, fmt.Errorf("a previously registered descriptor with the same fully-qualified name as %s has different label names or a different help string", desc)
}
} else {
// ...then check the new descriptors already seen.
if dimHash, exists := newDimHashesByName[desc.fqName]; exists {
if dimHash != desc.dimHash {
return nil, fmt.Errorf("descriptors reported by collector have inconsistent label names or help strings for the same fully-qualified name, offender is %s", desc)
}
} else {
newDimHashesByName[desc.fqName] = desc.dimHash
}
}
}
// Did anything happen at all?
if len(newDescIDs) == 0 {
return nil, errors.New("collector has no descriptors")
}
if existing, exists := r.collectorsByID[collectorID]; exists {
return existing, errAlreadyReg
}
// If the collectorID is new, but at least one of the descs existed
// before, we are in trouble.
if duplicateDescErr != nil {
return nil, duplicateDescErr
}
// Only after all tests have passed, actually register.
r.collectorsByID[collectorID] = c
for hash := range newDescIDs {
r.descIDs[hash] = struct{}{}
}
for name, dimHash := range newDimHashesByName {
r.dimHashesByName[name] = dimHash
}
return c, nil
}
func (r *registry) RegisterOrGet(m Collector) (Collector, error) {
existing, err := r.Register(m)
if err != nil && err != errAlreadyReg {
return nil, err
}
return existing, nil
}
func (r *registry) Unregister(c Collector) bool {
descChan := make(chan *Desc, capDescChan)
go func() {
c.Describe(descChan)
close(descChan)
}()
descIDs := map[uint64]struct{}{}
var collectorID uint64 // Just a sum of the desc IDs.
for desc := range descChan {
if _, exists := descIDs[desc.id]; !exists {
collectorID += desc.id
descIDs[desc.id] = struct{}{}
}
}
r.mtx.RLock()
if _, exists := r.collectorsByID[collectorID]; !exists {
r.mtx.RUnlock()
return false
}
r.mtx.RUnlock()
r.mtx.Lock()
defer r.mtx.Unlock()
delete(r.collectorsByID, collectorID)
for id := range descIDs {
delete(r.descIDs, id)
}
// dimHashesByName is left untouched as those must be consistent
// throughout the lifetime of a program.
return true
}
func (r *registry) Push(job, instance, addr, method string) error {
u := fmt.Sprintf("http://%s/metrics/jobs/%s", addr, url.QueryEscape(job))
if instance != "" {
u += "/instances/" + url.QueryEscape(instance)
}
buf := r.getBuf()
defer r.giveBuf(buf)
if _, err := r.writePB(buf, text.WriteProtoDelimited); err != nil {
if r.panicOnCollectError {
panic(err)
}
return err
}
req, err := http.NewRequest(method, u, buf)
if err != nil {
return err
}
req.Header.Set(contentTypeHeader, DelimitedTelemetryContentType)
resp, err := http.DefaultClient.Do(req)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != 202 {
return fmt.Errorf("unexpected status code %d while pushing to %s", resp.StatusCode, u)
}
return nil
}
func (r *registry) ServeHTTP(w http.ResponseWriter, req *http.Request) {
enc, contentType := chooseEncoder(req)
buf := r.getBuf()
defer r.giveBuf(buf)
writer, encoding := decorateWriter(req, buf)
if _, err := r.writePB(writer, enc); err != nil {
if r.panicOnCollectError {
panic(err)
}
http.Error(w, "An error has occurred:\n\n"+err.Error(), http.StatusInternalServerError)
return
}
if closer, ok := writer.(io.Closer); ok {
closer.Close()
}
header := w.Header()
header.Set(contentTypeHeader, contentType)
header.Set(contentLengthHeader, fmt.Sprint(buf.Len()))
if encoding != "" {
header.Set(contentEncodingHeader, encoding)
}
w.Write(buf.Bytes())
}
func (r *registry) writePB(w io.Writer, writeEncoded encoder) (int, error) {
var metricHashes map[uint64]struct{}
if r.collectChecksEnabled {
metricHashes = make(map[uint64]struct{})
}
metricChan := make(chan Metric, capMetricChan)
wg := sync.WaitGroup{}
r.mtx.RLock()
metricFamiliesByName := make(map[string]*dto.MetricFamily, len(r.dimHashesByName))
// Scatter.
// (Collectors could be complex and slow, so we call them all at once.)
wg.Add(len(r.collectorsByID))
go func() {
wg.Wait()
close(metricChan)
}()
for _, collector := range r.collectorsByID {
go func(collector Collector) {
defer wg.Done()
collector.Collect(metricChan)
}(collector)
}
r.mtx.RUnlock()
// Drain metricChan in case of premature return.
defer func() {
for _ = range metricChan {
}
}()
// Gather.
for metric := range metricChan {
// This could be done concurrently, too, but it required locking
// of metricFamiliesByName (and of metricHashes if checks are
// enabled). Most likely not worth it.
desc := metric.Desc()
metricFamily, ok := metricFamiliesByName[desc.fqName]
if !ok {
metricFamily = r.getMetricFamily()
defer r.giveMetricFamily(metricFamily)
metricFamily.Name = proto.String(desc.fqName)
metricFamily.Help = proto.String(desc.help)
metricFamiliesByName[desc.fqName] = metricFamily
}
dtoMetric := r.getMetric()
defer r.giveMetric(dtoMetric)
if err := metric.Write(dtoMetric); err != nil {
// TODO: Consider different means of error reporting so
// that a single erroneous metric could be skipped
// instead of blowing up the whole collection.
return 0, fmt.Errorf("error collecting metric %v: %s", desc, err)
}
switch {
case metricFamily.Type != nil:
// Type already set. We are good.
case dtoMetric.Gauge != nil:
metricFamily.Type = dto.MetricType_GAUGE.Enum()
case dtoMetric.Counter != nil:
metricFamily.Type = dto.MetricType_COUNTER.Enum()
case dtoMetric.Summary != nil:
metricFamily.Type = dto.MetricType_SUMMARY.Enum()
case dtoMetric.Untyped != nil:
metricFamily.Type = dto.MetricType_UNTYPED.Enum()
default:
return 0, fmt.Errorf("empty metric collected: %s", dtoMetric)
}
if r.collectChecksEnabled {
if err := r.checkConsistency(metricFamily, dtoMetric, desc, metricHashes); err != nil {
return 0, err
}
}
metricFamily.Metric = append(metricFamily.Metric, dtoMetric)
}
if r.metricFamilyInjectionHook != nil {
for _, mf := range r.metricFamilyInjectionHook() {
if _, exists := metricFamiliesByName[mf.GetName()]; exists {
return 0, fmt.Errorf("metric family with duplicate name injected: %s", mf)
}
metricFamiliesByName[mf.GetName()] = mf
}
}
// Now that MetricFamilies are all set, sort their Metrics
// lexicographically by their label values.
for _, mf := range metricFamiliesByName {
sort.Sort(metricSorter(mf.Metric))
}
// Write out MetricFamilies sorted by their name.
names := make([]string, 0, len(metricFamiliesByName))
for name := range metricFamiliesByName {
names = append(names, name)
}
sort.Strings(names)
var written int
for _, name := range names {
w, err := writeEncoded(w, metricFamiliesByName[name])
written += w
if err != nil {
return written, err
}
}
return written, nil
}
func (r *registry) checkConsistency(metricFamily *dto.MetricFamily, dtoMetric *dto.Metric, desc *Desc, metricHashes map[uint64]struct{}) error {
// Type consistency with metric family.
if metricFamily.GetType() == dto.MetricType_GAUGE && dtoMetric.Gauge == nil ||
metricFamily.GetType() == dto.MetricType_COUNTER && dtoMetric.Counter == nil ||
metricFamily.GetType() == dto.MetricType_SUMMARY && dtoMetric.Summary == nil ||
metricFamily.GetType() == dto.MetricType_UNTYPED && dtoMetric.Untyped == nil {
return fmt.Errorf(
"collected metric %q is not a %s",
dtoMetric, metricFamily.Type,
)
}
// Desc consistency with metric family.
if metricFamily.GetHelp() != desc.help {
return fmt.Errorf(
"collected metric %q has help %q but should have %q",
dtoMetric, desc.help, metricFamily.GetHelp(),
)
}
// Is the desc consistent with the content of the metric?
lpsFromDesc := make([]*dto.LabelPair, 0, len(dtoMetric.Label))
lpsFromDesc = append(lpsFromDesc, desc.constLabelPairs...)
for _, l := range desc.variableLabels {
lpsFromDesc = append(lpsFromDesc, &dto.LabelPair{
Name: proto.String(l),
})
}
if len(lpsFromDesc) != len(dtoMetric.Label) {
return fmt.Errorf(
"labels in collected metric %q are inconsistent with descriptor %s",
dtoMetric, desc,
)
}
sort.Sort(LabelPairSorter(lpsFromDesc))
for i, lpFromDesc := range lpsFromDesc {
lpFromMetric := dtoMetric.Label[i]
if lpFromDesc.GetName() != lpFromMetric.GetName() ||
lpFromDesc.Value != nil && lpFromDesc.GetValue() != lpFromMetric.GetValue() {
return fmt.Errorf(
"labels in collected metric %q are inconsistent with descriptor %s",
dtoMetric, desc,
)
}
}
// Is the metric unique (i.e. no other metric with the same name and the same label values)?
h := fnv.New64a()
var buf bytes.Buffer
buf.WriteString(desc.fqName)
buf.WriteByte(model.SeparatorByte)
h.Write(buf.Bytes())
for _, lp := range dtoMetric.Label {
buf.Reset()
buf.WriteString(lp.GetValue())
buf.WriteByte(model.SeparatorByte)
h.Write(buf.Bytes())
}
metricHash := h.Sum64()
if _, exists := metricHashes[metricHash]; exists {
return fmt.Errorf(
"collected metric %q was collected before with the same name and label values",
dtoMetric,
)
}
metricHashes[metricHash] = struct{}{}
r.mtx.RLock() // Remaining checks need the read lock.
defer r.mtx.RUnlock()
// Is the desc registered?
if _, exist := r.descIDs[desc.id]; !exist {
return fmt.Errorf("collected metric %q with unregistered descriptor %s", dtoMetric, desc)
}
return nil
}
func (r *registry) getBuf() *bytes.Buffer {
select {
case buf := <-r.bufPool:
return buf
default:
return &bytes.Buffer{}
}
}
func (r *registry) giveBuf(buf *bytes.Buffer) {
buf.Reset()
select {
case r.bufPool <- buf:
default:
}
}
func (r *registry) getMetricFamily() *dto.MetricFamily {
select {
case mf := <-r.metricFamilyPool:
return mf
default:
return &dto.MetricFamily{}
}
}
func (r *registry) giveMetricFamily(mf *dto.MetricFamily) {
mf.Reset()
select {
case r.metricFamilyPool <- mf:
default:
}
}
func (r *registry) getMetric() *dto.Metric {
select {
case m := <-r.metricPool:
return m
default:
return &dto.Metric{}
}
}
func (r *registry) giveMetric(m *dto.Metric) {
m.Reset()
select {
case r.metricPool <- m:
default:
}
}
func newRegistry() *registry {
return &registry{
collectorsByID: map[uint64]Collector{},
descIDs: map[uint64]struct{}{},
dimHashesByName: map[string]uint64{},
bufPool: make(chan *bytes.Buffer, numBufs),
metricFamilyPool: make(chan *dto.MetricFamily, numMetricFamilies),
metricPool: make(chan *dto.Metric, numMetrics),
}
}
func newDefaultRegistry() *registry {
r := newRegistry()
r.Register(NewProcessCollector(os.Getpid(), ""))
r.Register(NewGoCollector())
return r
}
func chooseEncoder(req *http.Request) (encoder, string) {
accepts := goautoneg.ParseAccept(req.Header.Get(acceptHeader))
for _, accept := range accepts {
switch {
case accept.Type == "application" &&
accept.SubType == "vnd.google.protobuf" &&
accept.Params["proto"] == "io.prometheus.client.MetricFamily":
switch accept.Params["encoding"] {
case "delimited":
return text.WriteProtoDelimited, DelimitedTelemetryContentType
case "text":
return text.WriteProtoText, ProtoTextTelemetryContentType
case "compact-text":
return text.WriteProtoCompactText, ProtoCompactTextTelemetryContentType
default:
continue
}
case accept.Type == "text" &&
accept.SubType == "plain" &&
(accept.Params["version"] == "0.0.4" || accept.Params["version"] == ""):
return text.MetricFamilyToText, TextTelemetryContentType
default:
continue
}
}
return text.MetricFamilyToText, TextTelemetryContentType
}
// decorateWriter wraps a writer to handle gzip compression if requested. It
// returns the decorated writer and the appropriate "Content-Encoding" header
// (which is empty if no compression is enabled).
func decorateWriter(request *http.Request, writer io.Writer) (io.Writer, string) {
header := request.Header.Get(acceptEncodingHeader)
parts := strings.Split(header, ",")
for _, part := range parts {
part := strings.TrimSpace(part)
if part == "gzip" || strings.HasPrefix(part, "gzip;") {
return gzip.NewWriter(writer), "gzip"
}
}
return writer, ""
}
type metricSorter []*dto.Metric
func (s metricSorter) Len() int {
return len(s)
}
func (s metricSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s metricSorter) Less(i, j int) bool {
for n, lp := range s[i].Label {
vi := lp.GetValue()
vj := s[j].Label[n].GetValue()
if vi != vj {
return vi < vj
}
}
return true
}

View File

@ -0,0 +1,489 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright (c) 2013, The Prometheus Authors
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file.
package prometheus
import (
"bytes"
"encoding/binary"
"net/http"
"testing"
"code.google.com/p/goprotobuf/proto"
dto "github.com/prometheus/client_model/go"
)
type fakeResponseWriter struct {
header http.Header
body bytes.Buffer
}
func (r *fakeResponseWriter) Header() http.Header {
return r.header
}
func (r *fakeResponseWriter) Write(d []byte) (l int, err error) {
return r.body.Write(d)
}
func (r *fakeResponseWriter) WriteHeader(c int) {
}
func testHandler(t testing.TB) {
metricVec := NewCounterVec(
CounterOpts{
Name: "name",
Help: "docstring",
ConstLabels: Labels{"constname": "constvalue"},
},
[]string{"labelname"},
)
metricVec.WithLabelValues("val1").Inc()
metricVec.WithLabelValues("val2").Inc()
varintBuf := make([]byte, binary.MaxVarintLen32)
externalMetricFamily := []*dto.MetricFamily{
{
Name: proto.String("externalname"),
Help: proto.String("externaldocstring"),
Type: dto.MetricType_COUNTER.Enum(),
Metric: []*dto.Metric{
{
Label: []*dto.LabelPair{
{
Name: proto.String("externallabelname"),
Value: proto.String("externalval1"),
},
{
Name: proto.String("externalconstname"),
Value: proto.String("externalconstvalue"),
},
},
Counter: &dto.Counter{
Value: proto.Float64(1),
},
},
},
},
}
marshaledExternalMetricFamily, err := proto.Marshal(externalMetricFamily[0])
if err != nil {
t.Fatal(err)
}
var externalBuf bytes.Buffer
l := binary.PutUvarint(varintBuf, uint64(len(marshaledExternalMetricFamily)))
_, err = externalBuf.Write(varintBuf[:l])
if err != nil {
t.Fatal(err)
}
_, err = externalBuf.Write(marshaledExternalMetricFamily)
if err != nil {
t.Fatal(err)
}
externalMetricFamilyAsBytes := externalBuf.Bytes()
externalMetricFamilyAsText := []byte(`# HELP externalname externaldocstring
# TYPE externalname counter
externalname{externallabelname="externalval1",externalconstname="externalconstvalue"} 1
`)
externalMetricFamilyAsProtoText := []byte(`name: "externalname"
help: "externaldocstring"
type: COUNTER
metric: <
label: <
name: "externallabelname"
value: "externalval1"
>
label: <
name: "externalconstname"
value: "externalconstvalue"
>
counter: <
value: 1
>
>
`)
externalMetricFamilyAsProtoCompactText := []byte(`name:"externalname" help:"externaldocstring" type:COUNTER metric:<label:<name:"externallabelname" value:"externalval1" > label:<name:"externalconstname" value:"externalconstvalue" > counter:<value:1 > >
`)
expectedMetricFamily := &dto.MetricFamily{
Name: proto.String("name"),
Help: proto.String("docstring"),
Type: dto.MetricType_COUNTER.Enum(),
Metric: []*dto.Metric{
{
Label: []*dto.LabelPair{
{
Name: proto.String("constname"),
Value: proto.String("constvalue"),
},
{
Name: proto.String("labelname"),
Value: proto.String("val1"),
},
},
Counter: &dto.Counter{
Value: proto.Float64(1),
},
},
{
Label: []*dto.LabelPair{
{
Name: proto.String("constname"),
Value: proto.String("constvalue"),
},
{
Name: proto.String("labelname"),
Value: proto.String("val2"),
},
},
Counter: &dto.Counter{
Value: proto.Float64(1),
},
},
},
}
marshaledExpectedMetricFamily, err := proto.Marshal(expectedMetricFamily)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l = binary.PutUvarint(varintBuf, uint64(len(marshaledExpectedMetricFamily)))
_, err = buf.Write(varintBuf[:l])
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(marshaledExpectedMetricFamily)
if err != nil {
t.Fatal(err)
}
expectedMetricFamilyAsBytes := buf.Bytes()
expectedMetricFamilyAsText := []byte(`# HELP name docstring
# TYPE name counter
name{constname="constvalue",labelname="val1"} 1
name{constname="constvalue",labelname="val2"} 1
`)
expectedMetricFamilyAsProtoText := []byte(`name: "name"
help: "docstring"
type: COUNTER
metric: <
label: <
name: "constname"
value: "constvalue"
>
label: <
name: "labelname"
value: "val1"
>
counter: <
value: 1
>
>
metric: <
label: <
name: "constname"
value: "constvalue"
>
label: <
name: "labelname"
value: "val2"
>
counter: <
value: 1
>
>
`)
expectedMetricFamilyAsProtoCompactText := []byte(`name:"name" help:"docstring" type:COUNTER metric:<label:<name:"constname" value:"constvalue" > label:<name:"labelname" value:"val1" > counter:<value:1 > > metric:<label:<name:"constname" value:"constvalue" > label:<name:"labelname" value:"val2" > counter:<value:1 > >
`)
type output struct {
headers map[string]string
body []byte
}
var scenarios = []struct {
headers map[string]string
out output
withCounter bool
withExternalMF bool
}{
{ // 0
headers: map[string]string{
"Accept": "foo/bar;q=0.2, dings/bums;q=0.8",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: []byte{},
},
},
{ // 1
headers: map[string]string{
"Accept": "foo/bar;q=0.2, application/quark;q=0.8",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: []byte{},
},
},
{ // 2
headers: map[string]string{
"Accept": "foo/bar;q=0.2, application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=bla;q=0.8",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: []byte{},
},
},
{ // 3
headers: map[string]string{
"Accept": "text/plain;q=0.2, application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.8",
},
out: output{
headers: map[string]string{
"Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`,
},
body: []byte{},
},
},
{ // 4
headers: map[string]string{
"Accept": "application/json",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: expectedMetricFamilyAsText,
},
withCounter: true,
},
{ // 5
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited",
},
out: output{
headers: map[string]string{
"Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`,
},
body: expectedMetricFamilyAsBytes,
},
withCounter: true,
},
{ // 6
headers: map[string]string{
"Accept": "application/json",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: externalMetricFamilyAsText,
},
withExternalMF: true,
},
{ // 7
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited",
},
out: output{
headers: map[string]string{
"Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`,
},
body: externalMetricFamilyAsBytes,
},
withExternalMF: true,
},
{ // 8
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited",
},
out: output{
headers: map[string]string{
"Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`,
},
body: bytes.Join(
[][]byte{
externalMetricFamilyAsBytes,
expectedMetricFamilyAsBytes,
},
[]byte{},
),
},
withCounter: true,
withExternalMF: true,
},
{ // 9
headers: map[string]string{
"Accept": "text/plain",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: []byte{},
},
},
{ // 10
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=bla;q=0.2, text/plain;q=0.5",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: expectedMetricFamilyAsText,
},
withCounter: true,
},
{ // 11
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=bla;q=0.2, text/plain;q=0.5;version=0.0.4",
},
out: output{
headers: map[string]string{
"Content-Type": `text/plain; version=0.0.4`,
},
body: bytes.Join(
[][]byte{
externalMetricFamilyAsText,
expectedMetricFamilyAsText,
},
[]byte{},
),
},
withCounter: true,
withExternalMF: true,
},
{ // 12
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.2, text/plain;q=0.5;version=0.0.2",
},
out: output{
headers: map[string]string{
"Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=delimited`,
},
body: bytes.Join(
[][]byte{
externalMetricFamilyAsBytes,
expectedMetricFamilyAsBytes,
},
[]byte{},
),
},
withCounter: true,
withExternalMF: true,
},
{ // 13
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=text;q=0.5, application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=delimited;q=0.4",
},
out: output{
headers: map[string]string{
"Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=text`,
},
body: bytes.Join(
[][]byte{
externalMetricFamilyAsProtoText,
expectedMetricFamilyAsProtoText,
},
[]byte{},
),
},
withCounter: true,
withExternalMF: true,
},
{ // 14
headers: map[string]string{
"Accept": "application/vnd.google.protobuf;proto=io.prometheus.client.MetricFamily;encoding=compact-text",
},
out: output{
headers: map[string]string{
"Content-Type": `application/vnd.google.protobuf; proto=io.prometheus.client.MetricFamily; encoding=compact-text`,
},
body: bytes.Join(
[][]byte{
externalMetricFamilyAsProtoCompactText,
expectedMetricFamilyAsProtoCompactText,
},
[]byte{},
),
},
withCounter: true,
withExternalMF: true,
},
}
for i, scenario := range scenarios {
registry := newRegistry()
registry.collectChecksEnabled = true
if scenario.withCounter {
registry.Register(metricVec)
}
if scenario.withExternalMF {
registry.metricFamilyInjectionHook = func() []*dto.MetricFamily {
return externalMetricFamily
}
}
writer := &fakeResponseWriter{
header: http.Header{},
}
handler := InstrumentHandler("prometheus", registry)
request, _ := http.NewRequest("GET", "/", nil)
for key, value := range scenario.headers {
request.Header.Add(key, value)
}
handler(writer, request)
for key, value := range scenario.out.headers {
if writer.Header().Get(key) != value {
t.Errorf(
"%d. expected %q for header %q, got %q",
i, value, key, writer.Header().Get(key),
)
}
}
if !bytes.Equal(scenario.out.body, writer.body.Bytes()) {
t.Errorf(
"%d. expected %q for body, got %q",
i, scenario.out.body, writer.body.Bytes(),
)
}
}
}
func TestHandler(t *testing.T) {
testHandler(t)
}
func BenchmarkHandler(b *testing.B) {
for i := 0; i < b.N; i++ {
testHandler(b)
}
}

View File

@ -0,0 +1,424 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"fmt"
"hash/fnv"
"sort"
"sync"
"time"
"code.google.com/p/goprotobuf/proto"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/client_golang/_vendor/perks/quantile"
)
// A Summary captures individual observations from an event or sample stream and
// summarizes them in a manner similar to traditional summary statistics: 1. sum
// of observations, 2. observation count, 3. rank estimations.
//
// A typical use-case is the observation of request latencies. By default, a
// Summary provides the median, the 90th and the 99th percentile of the latency
// as rank estimations.
//
// To create Summary instances, use NewSummary.
type Summary interface {
Metric
Collector
// Observe adds a single observation to the summary.
Observe(float64)
}
// DefObjectives are the default Summary quantile values.
var (
DefObjectives = map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001}
)
// Default values for SummaryOpts.
const (
// DefMaxAge is the default duration for which observations stay
// relevant.
DefMaxAge time.Duration = 10 * time.Minute
// DefAgeBuckets is the default number of buckets used to calculate the
// age of observations.
DefAgeBuckets = 5
// DefBufCap is the standard buffer size for collecting Summary observations.
DefBufCap = 500
)
// SummaryOpts bundles the options for creating a Summary metric. It is
// mandatory to set Name and Help to a non-empty string. All other fields are
// optional and can safely be left at their zero value.
type SummaryOpts struct {
// Namespace, Subsystem, and Name are components of the fully-qualified
// name of the Summary (created by joining these components with
// "_"). Only Name is mandatory, the others merely help structuring the
// name. Note that the fully-qualified name of the Summary must be a
// valid Prometheus metric name.
Namespace string
Subsystem string
Name string
// Help provides information about this Summary. Mandatory!
//
// Metrics with the same fully-qualified name must have the same Help
// string.
Help string
// ConstLabels are used to attach fixed labels to this
// Summary. Summaries with the same fully-qualified name must have the
// same label names in their ConstLabels.
//
// Note that in most cases, labels have a value that varies during the
// lifetime of a process. Those labels are usually managed with a
// SummaryVec. ConstLabels serve only special purposes. One is for the
// special case where the value of a label does not change during the
// lifetime of a process, e.g. if the revision of the running binary is
// put into a label. Another, more advanced purpose is if more than one
// Collector needs to collect Summaries with the same fully-qualified
// name. In that case, those Summaries must differ in the values of
// their ConstLabels. See the Collector examples.
//
// If the value of a label never changes (not even between binaries),
// that label most likely should not be a label at all (but part of the
// metric name).
ConstLabels Labels
// Objectives defines the quantile rank estimates with their respective
// absolute error. The default value is DefObjectives.
Objectives map[float64]float64
// MaxAge defines the duration for which an observation stays relevant
// for the summary. Must be positive. The default value is DefMaxAge.
MaxAge time.Duration
// AgeBuckets is the number of buckets used to exclude observations that
// are older than MaxAge from the summary. A higher number has a
// resource penalty, so only increase it if the higher resolution is
// really required. The default value is DefAgeBuckets.
AgeBuckets uint32
// BufCap defines the default sample stream buffer size. The default
// value of DefBufCap should suffice for most uses. If there is a need
// to increase the value, a multiple of 500 is recommended (because that
// is the internal buffer size of the underlying package
// "github.com/bmizerany/perks/quantile").
BufCap uint32
// Epsilon is the error epsilon for the quantile rank estimate. Must be
// positive. The default is DefEpsilon.
Epsilon float64
}
// TODO: Great fuck-up with the sliding-window decay algorithm... The Merge
// method of perk/quantile is actually not working as advertised - and it might
// be unfixable, as the underlying algorithm is apparently not capable of
// merging summaries in the first place. To avoid using Merge, we are currently
// adding observations to _each_ age bucket, i.e. the effort to add a sample is
// essentially multiplied by the number of age buckets. When rotating age
// buckets, we empty the previous head stream. On scrape time, we simply take
// the quantiles from the head stream (no merging required). Result: More effort
// on observation time, less effort on scrape time, which is exactly the
// opposite of what we try to accomplish, but at least the results are correct.
//
// The quite elegant previous contraption to merge the age buckets efficiently
// on scrape time (see code up commit 6b9530d72ea715f0ba612c0120e6e09fbf1d49d0)
// can't be used anymore.
// NewSummary creates a new Summary based on the provided SummaryOpts.
func NewSummary(opts SummaryOpts) Summary {
return newSummary(
NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
),
opts,
)
}
func newSummary(desc *Desc, opts SummaryOpts, labelValues ...string) Summary {
if len(desc.variableLabels) != len(labelValues) {
panic(errInconsistentCardinality)
}
if len(opts.Objectives) == 0 {
opts.Objectives = DefObjectives
}
if opts.MaxAge < 0 {
panic(fmt.Errorf("illegal max age MaxAge=%v", opts.MaxAge))
}
if opts.MaxAge == 0 {
opts.MaxAge = DefMaxAge
}
if opts.AgeBuckets == 0 {
opts.AgeBuckets = DefAgeBuckets
}
if opts.BufCap == 0 {
opts.BufCap = DefBufCap
}
s := &summary{
desc: desc,
objectives: opts.Objectives,
sortedObjectives: make([]float64, 0, len(opts.Objectives)),
labelPairs: makeLabelPairs(desc, labelValues),
hotBuf: make([]float64, 0, opts.BufCap),
coldBuf: make([]float64, 0, opts.BufCap),
streamDuration: opts.MaxAge / time.Duration(opts.AgeBuckets),
}
s.headStreamExpTime = time.Now().Add(s.streamDuration)
s.hotBufExpTime = s.headStreamExpTime
for i := uint32(0); i < opts.AgeBuckets; i++ {
s.streams = append(s.streams, s.newStream())
}
s.headStream = s.streams[0]
for qu := range s.objectives {
s.sortedObjectives = append(s.sortedObjectives, qu)
}
sort.Float64s(s.sortedObjectives)
s.Init(s) // Init self-collection.
return s
}
type summary struct {
SelfCollector
bufMtx sync.Mutex // Protects hotBuf and hotBufExpTime.
mtx sync.Mutex // Protects every other moving part.
// Lock bufMtx before mtx if both are needed.
desc *Desc
objectives map[float64]float64
sortedObjectives []float64
labelPairs []*dto.LabelPair
sum float64
cnt uint64
hotBuf, coldBuf []float64
streams []*quantile.Stream
streamDuration time.Duration
headStream *quantile.Stream
headStreamIdx int
headStreamExpTime, hotBufExpTime time.Time
}
func (s *summary) Desc() *Desc {
return s.desc
}
func (s *summary) Observe(v float64) {
s.bufMtx.Lock()
defer s.bufMtx.Unlock()
now := time.Now()
if now.After(s.hotBufExpTime) {
s.asyncFlush(now)
}
s.hotBuf = append(s.hotBuf, v)
if len(s.hotBuf) == cap(s.hotBuf) {
s.asyncFlush(now)
}
}
func (s *summary) Write(out *dto.Metric) error {
sum := &dto.Summary{}
qs := make([]*dto.Quantile, 0, len(s.objectives))
s.bufMtx.Lock()
s.mtx.Lock()
if len(s.hotBuf) != 0 {
s.swapBufs(time.Now())
}
s.bufMtx.Unlock()
s.flushColdBuf()
sum.SampleCount = proto.Uint64(s.cnt)
sum.SampleSum = proto.Float64(s.sum)
for _, rank := range s.sortedObjectives {
qs = append(qs, &dto.Quantile{
Quantile: proto.Float64(rank),
Value: proto.Float64(s.headStream.Query(rank)),
})
}
s.mtx.Unlock()
if len(qs) > 0 {
sort.Sort(quantSort(qs))
}
sum.Quantile = qs
out.Summary = sum
out.Label = s.labelPairs
return nil
}
func (s *summary) newStream() *quantile.Stream {
return quantile.NewTargeted(s.objectives)
}
// asyncFlush needs bufMtx locked.
func (s *summary) asyncFlush(now time.Time) {
s.mtx.Lock()
s.swapBufs(now)
// Unblock the original goroutine that was responsible for the mutation
// that triggered the compaction. But hold onto the global non-buffer
// state mutex until the operation finishes.
go func() {
s.flushColdBuf()
s.mtx.Unlock()
}()
}
// rotateStreams needs mtx AND bufMtx locked.
func (s *summary) maybeRotateStreams() {
for !s.hotBufExpTime.Equal(s.headStreamExpTime) {
s.headStream.Reset()
s.headStreamIdx++
if s.headStreamIdx >= len(s.streams) {
s.headStreamIdx = 0
}
s.headStream = s.streams[s.headStreamIdx]
s.headStreamExpTime = s.headStreamExpTime.Add(s.streamDuration)
}
}
// flushColdBuf needs mtx locked.
func (s *summary) flushColdBuf() {
for _, v := range s.coldBuf {
for _, stream := range s.streams {
stream.Insert(v)
}
s.cnt++
s.sum += v
}
s.coldBuf = s.coldBuf[0:0]
s.maybeRotateStreams()
}
// swapBufs needs mtx AND bufMtx locked, coldBuf must be empty.
func (s *summary) swapBufs(now time.Time) {
if len(s.coldBuf) != 0 {
panic("coldBuf is not empty")
}
s.hotBuf, s.coldBuf = s.coldBuf, s.hotBuf
// hotBuf is now empty and gets new expiration set.
for now.After(s.hotBufExpTime) {
s.hotBufExpTime = s.hotBufExpTime.Add(s.streamDuration)
}
}
type quantSort []*dto.Quantile
func (s quantSort) Len() int {
return len(s)
}
func (s quantSort) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s quantSort) Less(i, j int) bool {
return s[i].GetQuantile() < s[j].GetQuantile()
}
// SummaryVec is a Collector that bundles a set of Summaries that all share the
// same Desc, but have different values for their variable labels. This is used
// if you want to count the same thing partitioned by various dimensions
// (e.g. http request latencies, partitioned by status code and method). Create
// instances with NewSummaryVec.
type SummaryVec struct {
MetricVec
}
// NewSummaryVec creates a new SummaryVec based on the provided SummaryOpts and
// partitioned by the given label names. At least one label name must be
// provided.
func NewSummaryVec(opts SummaryOpts, labelNames []string) *SummaryVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &SummaryVec{
MetricVec: MetricVec{
children: map[uint64]Metric{},
desc: desc,
hash: fnv.New64a(),
newMetric: func(lvs ...string) Metric {
return newSummary(desc, opts, lvs...)
},
},
}
}
// GetMetricWithLabelValues replaces the method of the same name in
// MetricVec. The difference is that this method returns a Summary and not a
// Metric so that no type conversion is required.
func (m *SummaryVec) GetMetricWithLabelValues(lvs ...string) (Summary, error) {
metric, err := m.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Summary), err
}
return nil, err
}
// GetMetricWith replaces the method of the same name in MetricVec. The
// difference is that this method returns a Summary and not a Metric so that no
// type conversion is required.
func (m *SummaryVec) GetMetricWith(labels Labels) (Summary, error) {
metric, err := m.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Summary), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. By not returning an
// error, WithLabelValues allows shortcuts like
// myVec.WithLabelValues("404", "GET").Add(42)
func (m *SummaryVec) WithLabelValues(lvs ...string) Summary {
return m.MetricVec.WithLabelValues(lvs...).(Summary)
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. By not returning an error, With allows shortcuts like
// myVec.With(Labels{"code": "404", "method": "GET"}).Add(42)
func (m *SummaryVec) With(labels Labels) Summary {
return m.MetricVec.With(labels).(Summary)
}

View File

@ -0,0 +1,328 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"math"
"math/rand"
"sort"
"sync"
"testing"
"testing/quick"
"time"
dto "github.com/prometheus/client_model/go"
)
func benchmarkSummaryObserve(w int, b *testing.B) {
b.StopTimer()
wg := new(sync.WaitGroup)
wg.Add(w)
g := new(sync.WaitGroup)
g.Add(1)
s := NewSummary(SummaryOpts{})
for i := 0; i < w; i++ {
go func() {
g.Wait()
for i := 0; i < b.N; i++ {
s.Observe(float64(i))
}
wg.Done()
}()
}
b.StartTimer()
g.Done()
wg.Wait()
}
func BenchmarkSummaryObserve1(b *testing.B) {
benchmarkSummaryObserve(1, b)
}
func BenchmarkSummaryObserve2(b *testing.B) {
benchmarkSummaryObserve(2, b)
}
func BenchmarkSummaryObserve4(b *testing.B) {
benchmarkSummaryObserve(4, b)
}
func BenchmarkSummaryObserve8(b *testing.B) {
benchmarkSummaryObserve(8, b)
}
func benchmarkSummaryWrite(w int, b *testing.B) {
b.StopTimer()
wg := new(sync.WaitGroup)
wg.Add(w)
g := new(sync.WaitGroup)
g.Add(1)
s := NewSummary(SummaryOpts{})
for i := 0; i < 1000000; i++ {
s.Observe(float64(i))
}
for j := 0; j < w; j++ {
outs := make([]dto.Metric, b.N)
go func(o []dto.Metric) {
g.Wait()
for i := 0; i < b.N; i++ {
s.Write(&o[i])
}
wg.Done()
}(outs)
}
b.StartTimer()
g.Done()
wg.Wait()
}
func BenchmarkSummaryWrite1(b *testing.B) {
benchmarkSummaryWrite(1, b)
}
func BenchmarkSummaryWrite2(b *testing.B) {
benchmarkSummaryWrite(2, b)
}
func BenchmarkSummaryWrite4(b *testing.B) {
benchmarkSummaryWrite(4, b)
}
func BenchmarkSummaryWrite8(b *testing.B) {
benchmarkSummaryWrite(8, b)
}
func TestSummaryConcurrency(t *testing.T) {
rand.Seed(42)
it := func(n uint32) bool {
mutations := int(n%1e4 + 1e4)
concLevel := int(n%5 + 1)
total := mutations * concLevel
var start, end sync.WaitGroup
start.Add(1)
end.Add(concLevel)
sum := NewSummary(SummaryOpts{
Name: "test_summary",
Help: "helpless",
})
allVars := make([]float64, total)
var sampleSum float64
for i := 0; i < concLevel; i++ {
vals := make([]float64, mutations)
for j := 0; j < mutations; j++ {
v := rand.NormFloat64()
vals[j] = v
allVars[i*mutations+j] = v
sampleSum += v
}
go func(vals []float64) {
start.Wait()
for _, v := range vals {
sum.Observe(v)
}
end.Done()
}(vals)
}
sort.Float64s(allVars)
start.Done()
end.Wait()
m := &dto.Metric{}
sum.Write(m)
if got, want := int(*m.Summary.SampleCount), total; got != want {
t.Errorf("got sample count %d, want %d", got, want)
}
if got, want := *m.Summary.SampleSum, sampleSum; math.Abs((got-want)/want) > 0.001 {
t.Errorf("got sample sum %f, want %f", got, want)
}
objectives := make([]float64, 0, len(DefObjectives))
for qu := range DefObjectives {
objectives = append(objectives, qu)
}
sort.Float64s(objectives)
for i, wantQ := range objectives {
ε := DefObjectives[wantQ]
gotQ := *m.Summary.Quantile[i].Quantile
gotV := *m.Summary.Quantile[i].Value
min, max := getBounds(allVars, wantQ, ε)
if gotQ != wantQ {
t.Errorf("got quantile %f, want %f", gotQ, wantQ)
}
if gotV < min || gotV > max {
t.Errorf("got %f for quantile %f, want [%f,%f]", gotV, gotQ, min, max)
}
}
return true
}
if err := quick.Check(it, nil); err != nil {
t.Error(err)
}
}
func TestSummaryVecConcurrency(t *testing.T) {
rand.Seed(42)
objectives := make([]float64, 0, len(DefObjectives))
for qu := range DefObjectives {
objectives = append(objectives, qu)
}
sort.Float64s(objectives)
it := func(n uint32) bool {
mutations := int(n%1e4 + 1e4)
concLevel := int(n%7 + 1)
vecLength := int(n%3 + 1)
var start, end sync.WaitGroup
start.Add(1)
end.Add(concLevel)
sum := NewSummaryVec(
SummaryOpts{
Name: "test_summary",
Help: "helpless",
},
[]string{"label"},
)
allVars := make([][]float64, vecLength)
sampleSums := make([]float64, vecLength)
for i := 0; i < concLevel; i++ {
vals := make([]float64, mutations)
picks := make([]int, mutations)
for j := 0; j < mutations; j++ {
v := rand.NormFloat64()
vals[j] = v
pick := rand.Intn(vecLength)
picks[j] = pick
allVars[pick] = append(allVars[pick], v)
sampleSums[pick] += v
}
go func(vals []float64) {
start.Wait()
for i, v := range vals {
sum.WithLabelValues(string('A' + picks[i])).Observe(v)
}
end.Done()
}(vals)
}
for _, vars := range allVars {
sort.Float64s(vars)
}
start.Done()
end.Wait()
for i := 0; i < vecLength; i++ {
m := &dto.Metric{}
s := sum.WithLabelValues(string('A' + i))
s.Write(m)
if got, want := int(*m.Summary.SampleCount), len(allVars[i]); got != want {
t.Errorf("got sample count %d for label %c, want %d", got, 'A'+i, want)
}
if got, want := *m.Summary.SampleSum, sampleSums[i]; math.Abs((got-want)/want) > 0.001 {
t.Errorf("got sample sum %f for label %c, want %f", got, 'A'+i, want)
}
for j, wantQ := range objectives {
ε := DefObjectives[wantQ]
gotQ := *m.Summary.Quantile[j].Quantile
gotV := *m.Summary.Quantile[j].Value
min, max := getBounds(allVars[i], wantQ, ε)
if gotQ != wantQ {
t.Errorf("got quantile %f for label %c, want %f", gotQ, 'A'+i, wantQ)
}
if gotV < min || gotV > max {
t.Errorf("got %f for quantile %f for label %c, want [%f,%f]", gotV, gotQ, 'A'+i, min, max)
}
}
}
return true
}
if err := quick.Check(it, nil); err != nil {
t.Error(err)
}
}
func TestSummaryDecay(t *testing.T) {
sum := NewSummary(SummaryOpts{
Name: "test_summary",
Help: "helpless",
MaxAge: 100 * time.Millisecond,
Objectives: map[float64]float64{0.1: 0.001},
AgeBuckets: 10,
})
m := &dto.Metric{}
i := 0
tick := time.NewTicker(time.Millisecond)
for _ = range tick.C {
i++
sum.Observe(float64(i))
if i%10 == 0 {
sum.Write(m)
if got, want := *m.Summary.Quantile[0].Value, math.Max(float64(i)/10, float64(i-90)); math.Abs(got-want) > 20 {
t.Errorf("%d. got %f, want %f", i, got, want)
}
m.Reset()
}
if i >= 1000 {
break
}
}
tick.Stop()
}
func getBounds(vars []float64, q, ε float64) (min, max float64) {
// TODO: This currently tolerates an error of up to 2*ε. The error must
// be at most ε, but for some reason, it's sometimes slightly
// higher. That's a bug.
n := float64(len(vars))
lower := int((q - 2*ε) * n)
upper := int(math.Ceil((q + 2*ε) * n))
min = vars[0]
if lower > 1 {
min = vars[lower-1]
}
max = vars[len(vars)-1]
if upper < len(vars) {
max = vars[upper-1]
}
return
}

View File

@ -0,0 +1,145 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import "hash/fnv"
// Untyped is a Metric that represents a single numerical value that can
// arbitrarily go up and down.
//
// An Untyped metric works the same as a Gauge. The only difference is that to
// no type information is implied.
//
// To create Gauge instances, use NewUntyped.
type Untyped interface {
Metric
Collector
// Set sets the Untyped metric to an arbitrary value.
Set(float64)
// Inc increments the Untyped metric by 1.
Inc()
// Dec decrements the Untyped metric by 1.
Dec()
// Add adds the given value to the Untyped metric. (The value can be
// negative, resulting in a decrease.)
Add(float64)
// Sub subtracts the given value from the Untyped metric. (The value can
// be negative, resulting in an increase.)
Sub(float64)
}
// UntypedOpts is an alias for Opts. See there for doc comments.
type UntypedOpts Opts
// NewUntyped creates a new Untyped metric from the provided UntypedOpts.
func NewUntyped(opts UntypedOpts) Untyped {
return newValue(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), UntypedValue, 0)
}
// UntypedVec is a Collector that bundles a set of Untyped metrics that all
// share the same Desc, but have different values for their variable
// labels. This is used if you want to count the same thing partitioned by
// various dimensions. Create instances with NewUntypedVec.
type UntypedVec struct {
MetricVec
}
// NewUntypedVec creates a new UntypedVec based on the provided UntypedOpts and
// partitioned by the given label names. At least one label name must be
// provided.
func NewUntypedVec(opts UntypedOpts, labelNames []string) *UntypedVec {
desc := NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
labelNames,
opts.ConstLabels,
)
return &UntypedVec{
MetricVec: MetricVec{
children: map[uint64]Metric{},
desc: desc,
hash: fnv.New64a(),
newMetric: func(lvs ...string) Metric {
return newValue(desc, UntypedValue, 0, lvs...)
},
},
}
}
// GetMetricWithLabelValues replaces the method of the same name in
// MetricVec. The difference is that this method returns an Untyped and not a
// Metric so that no type conversion is required.
func (m *UntypedVec) GetMetricWithLabelValues(lvs ...string) (Untyped, error) {
metric, err := m.MetricVec.GetMetricWithLabelValues(lvs...)
if metric != nil {
return metric.(Untyped), err
}
return nil, err
}
// GetMetricWith replaces the method of the same name in MetricVec. The
// difference is that this method returns an Untyped and not a Metric so that no
// type conversion is required.
func (m *UntypedVec) GetMetricWith(labels Labels) (Untyped, error) {
metric, err := m.MetricVec.GetMetricWith(labels)
if metric != nil {
return metric.(Untyped), err
}
return nil, err
}
// WithLabelValues works as GetMetricWithLabelValues, but panics where
// GetMetricWithLabelValues would have returned an error. By not returning an
// error, WithLabelValues allows shortcuts like
// myVec.WithLabelValues("404", "GET").Add(42)
func (m *UntypedVec) WithLabelValues(lvs ...string) Untyped {
return m.MetricVec.WithLabelValues(lvs...).(Untyped)
}
// With works as GetMetricWith, but panics where GetMetricWithLabels would have
// returned an error. By not returning an error, With allows shortcuts like
// myVec.With(Labels{"code": "404", "method": "GET"}).Add(42)
func (m *UntypedVec) With(labels Labels) Untyped {
return m.MetricVec.With(labels).(Untyped)
}
// UntypedFunc is an Untyped whose value is determined at collect time by
// calling a provided function.
//
// To create UntypedFunc instances, use NewUntypedFunc.
type UntypedFunc interface {
Metric
Collector
}
// NewUntypedFunc creates a new UntypedFunc based on the provided
// UntypedOpts. The value reported is determined by calling the given function
// from within the Write method. Take into account that metric collection may
// happen concurrently. If that results in concurrent calls to Write, like in
// the case where an UntypedFunc is directly registered with Prometheus, the
// provided function must be concurrency-safe.
func NewUntypedFunc(opts UntypedOpts, function func() float64) UntypedFunc {
return newValueFunc(NewDesc(
BuildFQName(opts.Namespace, opts.Subsystem, opts.Name),
opts.Help,
nil,
opts.ConstLabels,
), UntypedValue, function)
}

View File

@ -0,0 +1,230 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"errors"
"fmt"
"math"
"sort"
"sync/atomic"
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
)
// ValueType is an enumeration of metric types that represent a simple value.
type ValueType int
// Possible values for the ValueType enum.
const (
_ ValueType = iota
CounterValue
GaugeValue
UntypedValue
)
var errInconsistentCardinality = errors.New("inconsistent label cardinality")
// value is a generic metric for simple values. It implements Metric, Collector,
// Counter, Gauge, and Untyped. Its effective type is determined by
// ValueType. This is a low-level building block used by the library to back the
// implementations of Counter, Gauge, and Untyped.
type value struct {
SelfCollector
desc *Desc
valType ValueType
valBits uint64 // These are the bits of the represented float64 value.
labelPairs []*dto.LabelPair
}
// newValue returns a newly allocated value with the given Desc, ValueType,
// sample value and label values. It panics if the number of label
// values is different from the number of variable labels in Desc.
func newValue(desc *Desc, valueType ValueType, val float64, labelValues ...string) *value {
if len(labelValues) != len(desc.variableLabels) {
panic(errInconsistentCardinality)
}
result := &value{
desc: desc,
valType: valueType,
valBits: math.Float64bits(val),
labelPairs: makeLabelPairs(desc, labelValues),
}
result.Init(result)
return result
}
func (v *value) Desc() *Desc {
return v.desc
}
func (v *value) Set(val float64) {
atomic.StoreUint64(&v.valBits, math.Float64bits(val))
}
func (v *value) Inc() {
v.Add(1)
}
func (v *value) Dec() {
v.Add(-1)
}
func (v *value) Add(val float64) {
for {
oldBits := atomic.LoadUint64(&v.valBits)
newBits := math.Float64bits(math.Float64frombits(oldBits) + val)
if atomic.CompareAndSwapUint64(&v.valBits, oldBits, newBits) {
return
}
}
}
func (v *value) Sub(val float64) {
v.Add(val * -1)
}
func (v *value) Write(out *dto.Metric) error {
val := math.Float64frombits(atomic.LoadUint64(&v.valBits))
return populateMetric(v.valType, val, v.labelPairs, out)
}
// valueFunc is a generic metric for simple values retrieved on collect time
// from a function. It implements Metric and Collector. Its effective type is
// determined by ValueType. This is a low-level building block used by the
// library to back the implementations of CounterFunc, GaugeFunc, and
// UntypedFunc.
type valueFunc struct {
SelfCollector
desc *Desc
valType ValueType
function func() float64
labelPairs []*dto.LabelPair
}
// newValueFunc returns a newly allocated valueFunc with the given Desc and
// ValueType. The value reported is determined by calling the given function
// from within the Write method. Take into account that metric collection may
// happen concurrently. If that results in concurrent calls to Write, like in
// the case where a valueFunc is directly registered with Prometheus, the
// provided function must be concurrency-safe.
func newValueFunc(desc *Desc, valueType ValueType, function func() float64) *valueFunc {
result := &valueFunc{
desc: desc,
valType: valueType,
function: function,
labelPairs: makeLabelPairs(desc, nil),
}
result.Init(result)
return result
}
func (v *valueFunc) Desc() *Desc {
return v.desc
}
func (v *valueFunc) Write(out *dto.Metric) error {
return populateMetric(v.valType, v.function(), v.labelPairs, out)
}
// NewConstMetric returns a metric with one fixed value that cannot be
// changed. Users of this package will not have much use for it in regular
// operations. However, when implementing custom Collectors, it is useful as a
// throw-away metric that is generated on the fly to send it to Prometheus in
// the Collect method. NewConstMetric returns an error if the length of
// labelValues is not consistent with the variable labels in Desc.
func NewConstMetric(desc *Desc, valueType ValueType, value float64, labelValues ...string) (Metric, error) {
if len(desc.variableLabels) != len(labelValues) {
return nil, errInconsistentCardinality
}
return &constMetric{
desc: desc,
valType: valueType,
val: value,
labelPairs: makeLabelPairs(desc, labelValues),
}, nil
}
// MustNewConstMetric is a version of NewConstMetric that panics where
// NewConstMetric would have returned an error.
func MustNewConstMetric(desc *Desc, valueType ValueType, value float64, labelValues ...string) Metric {
m, err := NewConstMetric(desc, valueType, value, labelValues...)
if err != nil {
panic(err)
}
return m
}
type constMetric struct {
desc *Desc
valType ValueType
val float64
labelPairs []*dto.LabelPair
}
func (m *constMetric) Desc() *Desc {
return m.desc
}
func (m *constMetric) Write(out *dto.Metric) error {
return populateMetric(m.valType, m.val, m.labelPairs, out)
}
func populateMetric(
t ValueType,
v float64,
labelPairs []*dto.LabelPair,
m *dto.Metric,
) error {
m.Label = labelPairs
switch t {
case CounterValue:
m.Counter = &dto.Counter{Value: proto.Float64(v)}
case GaugeValue:
m.Gauge = &dto.Gauge{Value: proto.Float64(v)}
case UntypedValue:
m.Untyped = &dto.Untyped{Value: proto.Float64(v)}
default:
return fmt.Errorf("encountered unknown type %v", t)
}
return nil
}
func makeLabelPairs(desc *Desc, labelValues []string) []*dto.LabelPair {
totalLen := len(desc.variableLabels) + len(desc.constLabelPairs)
if totalLen == 0 {
// Super fast path.
return nil
}
if len(desc.variableLabels) == 0 {
// Moderately fast path.
return desc.constLabelPairs
}
labelPairs := make([]*dto.LabelPair, 0, totalLen)
for i, n := range desc.variableLabels {
labelPairs = append(labelPairs, &dto.LabelPair{
Name: proto.String(n),
Value: proto.String(labelValues[i]),
})
}
for _, lp := range desc.constLabelPairs {
labelPairs = append(labelPairs, lp)
}
sort.Sort(LabelPairSorter(labelPairs))
return labelPairs
}

View File

@ -0,0 +1,241 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"bytes"
"fmt"
"hash"
"sync"
)
// MetricVec is a Collector to bundle metrics of the same name that
// differ in their label values. MetricVec is usually not used directly but as a
// building block for implementations of vectors of a given metric
// type. GaugeVec, CounterVec, SummaryVec, and UntypedVec are examples already
// provided in this package.
type MetricVec struct {
mtx sync.RWMutex // Protects not only children, but also hash and buf.
children map[uint64]Metric
desc *Desc
// hash is our own hash instance to avoid repeated allocations.
hash hash.Hash64
// buf is used to copy string contents into it for hashing,
// again to avoid allocations.
buf bytes.Buffer
newMetric func(labelValues ...string) Metric
}
// Describe implements Collector. The length of the returned slice
// is always one.
func (m *MetricVec) Describe(ch chan<- *Desc) {
ch <- m.desc
}
// Collect implements Collector.
func (m *MetricVec) Collect(ch chan<- Metric) {
m.mtx.RLock()
defer m.mtx.RUnlock()
for _, metric := range m.children {
ch <- metric
}
}
// GetMetricWithLabelValues returns the Metric for the given slice of label
// values (same order as the VariableLabels in Desc). If that combination of
// label values is accessed for the first time, a new Metric is created.
// Keeping the Metric for later use is possible (and should be considered if
// performance is critical), but keep in mind that Reset, DeleteLabelValues and
// Delete can be used to delete the Metric from the MetricVec. In that case, the
// Metric will still exist, but it will not be exported anymore, even if a
// Metric with the same label values is created later. See also the CounterVec
// example.
//
// An error is returned if the number of label values is not the same as the
// number of VariableLabels in Desc.
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as
// an alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the GaugeVec example.
func (m *MetricVec) GetMetricWithLabelValues(lvs ...string) (Metric, error) {
m.mtx.Lock()
defer m.mtx.Unlock()
h, err := m.hashLabelValues(lvs)
if err != nil {
return nil, err
}
return m.getOrCreateMetric(h, lvs...), nil
}
// GetMetricWith returns the Metric for the given Labels map (the label names
// must match those of the VariableLabels in Desc). If that label map is
// accessed for the first time, a new Metric is created. Implications of keeping
// the Metric are the same as for GetMetricWithLabelValues.
//
// An error is returned if the number and names of the Labels are inconsistent
// with those of the VariableLabels in Desc.
//
// This method is used for the same purpose as
// GetMetricWithLabelValues(...string). See there for pros and cons of the two
// methods.
func (m *MetricVec) GetMetricWith(labels Labels) (Metric, error) {
m.mtx.Lock()
defer m.mtx.Unlock()
h, err := m.hashLabels(labels)
if err != nil {
return nil, err
}
lvs := make([]string, len(labels))
for i, label := range m.desc.variableLabels {
lvs[i] = labels[label]
}
return m.getOrCreateMetric(h, lvs...), nil
}
// WithLabelValues works as GetMetricWithLabelValues, but panics if an error
// occurs. The method allows neat syntax like:
// httpReqs.WithLabelValues("404", "POST").Inc()
func (m *MetricVec) WithLabelValues(lvs ...string) Metric {
metric, err := m.GetMetricWithLabelValues(lvs...)
if err != nil {
panic(err)
}
return metric
}
// With works as GetMetricWith, but panics if an error occurs. The method allows
// neat syntax like:
// httpReqs.With(Labels{"status":"404", "method":"POST"}).Inc()
func (m *MetricVec) With(labels Labels) Metric {
metric, err := m.GetMetricWith(labels)
if err != nil {
panic(err)
}
return metric
}
// DeleteLabelValues removes the metric where the variable labels are the same
// as those passed in as labels (same order as the VariableLabels in Desc). It
// returns true if a metric was deleted.
//
// It is not an error if the number of label values is not the same as the
// number of VariableLabels in Desc. However, such inconsistent label count can
// never match an actual Metric, so the method will always return false in that
// case.
//
// Note that for more than one label value, this method is prone to mistakes
// caused by an incorrect order of arguments. Consider Delete(Labels) as an
// alternative to avoid that type of mistake. For higher label numbers, the
// latter has a much more readable (albeit more verbose) syntax, but it comes
// with a performance overhead (for creating and processing the Labels map).
// See also the CounterVec example.
func (m *MetricVec) DeleteLabelValues(lvs ...string) bool {
m.mtx.Lock()
defer m.mtx.Unlock()
h, err := m.hashLabelValues(lvs)
if err != nil {
return false
}
if _, has := m.children[h]; !has {
return false
}
delete(m.children, h)
return true
}
// Delete deletes the metric where the variable labels are the same as those
// passed in as labels. It returns true if a metric was deleted.
//
// It is not an error if the number and names of the Labels are inconsistent
// with those of the VariableLabels in the Desc of the MetricVec. However, such
// inconsistent Labels can never match an actual Metric, so the method will
// always return false in that case.
//
// This method is used for the same purpose as DeleteLabelValues(...string). See
// there for pros and cons of the two methods.
func (m *MetricVec) Delete(labels Labels) bool {
m.mtx.Lock()
defer m.mtx.Unlock()
h, err := m.hashLabels(labels)
if err != nil {
return false
}
if _, has := m.children[h]; !has {
return false
}
delete(m.children, h)
return true
}
// Reset deletes all metrics in this vector.
func (m *MetricVec) Reset() {
m.mtx.Lock()
defer m.mtx.Unlock()
for h := range m.children {
delete(m.children, h)
}
}
func (m *MetricVec) hashLabelValues(vals []string) (uint64, error) {
if len(vals) != len(m.desc.variableLabels) {
return 0, errInconsistentCardinality
}
m.hash.Reset()
for _, val := range vals {
m.buf.Reset()
m.buf.WriteString(val)
m.hash.Write(m.buf.Bytes())
}
return m.hash.Sum64(), nil
}
func (m *MetricVec) hashLabels(labels Labels) (uint64, error) {
if len(labels) != len(m.desc.variableLabels) {
return 0, errInconsistentCardinality
}
m.hash.Reset()
for _, label := range m.desc.variableLabels {
val, ok := labels[label]
if !ok {
return 0, fmt.Errorf("label name %q missing in label map", label)
}
m.buf.Reset()
m.buf.WriteString(val)
m.hash.Write(m.buf.Bytes())
}
return m.hash.Sum64(), nil
}
func (m *MetricVec) getOrCreateMetric(hash uint64, labelValues ...string) Metric {
metric, ok := m.children[hash]
if !ok {
// Copy labelValues. Otherwise, they would be allocated even if we don't go
// down this code path.
copiedLabelValues := append(make([]string, 0, len(labelValues)), labelValues...)
metric = m.newMetric(copiedLabelValues...)
m.children[hash] = metric
}
return metric
}

View File

@ -0,0 +1,91 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package prometheus
import (
"hash/fnv"
"testing"
)
func TestDelete(t *testing.T) {
desc := NewDesc("test", "helpless", []string{"l1", "l2"}, nil)
vec := MetricVec{
children: map[uint64]Metric{},
desc: desc,
hash: fnv.New64a(),
newMetric: func(lvs ...string) Metric {
return newValue(desc, UntypedValue, 0, lvs...)
},
}
if got, want := vec.Delete(Labels{"l1": "v1", "l2": "v2"}), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
vec.With(Labels{"l1": "v1", "l2": "v2"}).(Untyped).Set(42)
if got, want := vec.Delete(Labels{"l1": "v1", "l2": "v2"}), true; got != want {
t.Errorf("got %v, want %v", got, want)
}
if got, want := vec.Delete(Labels{"l1": "v1", "l2": "v2"}), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
vec.With(Labels{"l1": "v1", "l2": "v2"}).(Untyped).Set(42)
if got, want := vec.Delete(Labels{"l2": "v2", "l1": "v1"}), true; got != want {
t.Errorf("got %v, want %v", got, want)
}
if got, want := vec.Delete(Labels{"l2": "v2", "l1": "v1"}), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
vec.With(Labels{"l1": "v1", "l2": "v2"}).(Untyped).Set(42)
if got, want := vec.Delete(Labels{"l2": "v1", "l1": "v2"}), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
if got, want := vec.Delete(Labels{"l1": "v1"}), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
}
func TestDeleteLabelValues(t *testing.T) {
desc := NewDesc("test", "helpless", []string{"l1", "l2"}, nil)
vec := MetricVec{
children: map[uint64]Metric{},
desc: desc,
hash: fnv.New64a(),
newMetric: func(lvs ...string) Metric {
return newValue(desc, UntypedValue, 0, lvs...)
},
}
if got, want := vec.DeleteLabelValues("v1", "v2"), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
vec.With(Labels{"l1": "v1", "l2": "v2"}).(Untyped).Set(42)
if got, want := vec.DeleteLabelValues("v1", "v2"), true; got != want {
t.Errorf("got %v, want %v", got, want)
}
if got, want := vec.DeleteLabelValues("v1", "v2"), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
vec.With(Labels{"l1": "v1", "l2": "v2"}).(Untyped).Set(42)
if got, want := vec.DeleteLabelValues("v2", "v1"), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
if got, want := vec.DeleteLabelValues("v1"), false; got != want {
t.Errorf("got %v, want %v", got, want)
}
}

View File

@ -0,0 +1,168 @@
// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package text
import (
"bytes"
"compress/gzip"
"io"
"io/ioutil"
"testing"
dto "github.com/prometheus/client_model/go"
"github.com/matttproud/golang_protobuf_extensions/ext"
)
// Benchmarks to show how much penalty text format parsing actually inflicts.
//
// Example results on Linux 3.13.0, Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz, go1.4.
//
// BenchmarkParseText 1000 1188535 ns/op 205085 B/op 6135 allocs/op
// BenchmarkParseTextGzip 1000 1376567 ns/op 246224 B/op 6151 allocs/op
// BenchmarkParseProto 10000 172790 ns/op 52258 B/op 1160 allocs/op
// BenchmarkParseProtoGzip 5000 324021 ns/op 94931 B/op 1211 allocs/op
// BenchmarkParseProtoMap 10000 187946 ns/op 58714 B/op 1203 allocs/op
//
// CONCLUSION: The overhead for the map is negligible. Text format needs ~5x more allocations.
// Without compression, it needs ~7x longer, but with compression (the more relevant scenario),
// the difference becomes less relevant, only ~4x.
//
// The test data contains 248 samples.
//
// BenchmarkProcessor002ParseOnly in the extraction package is not quite
// comparable to the benchmarks here, but it gives an idea: JSON parsing is even
// slower than text parsing and needs a comparable amount of allocs.
// BenchmarkParseText benchmarks the parsing of a text-format scrape into metric
// family DTOs.
func BenchmarkParseText(b *testing.B) {
b.StopTimer()
data, err := ioutil.ReadFile("testdata/text")
if err != nil {
b.Fatal(err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
if _, err := parser.TextToMetricFamilies(bytes.NewReader(data)); err != nil {
b.Fatal(err)
}
}
}
// BenchmarkParseTextGzip benchmarks the parsing of a gzipped text-format scrape
// into metric family DTOs.
func BenchmarkParseTextGzip(b *testing.B) {
b.StopTimer()
data, err := ioutil.ReadFile("testdata/text.gz")
if err != nil {
b.Fatal(err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
in, err := gzip.NewReader(bytes.NewReader(data))
if err != nil {
b.Fatal(err)
}
if _, err := parser.TextToMetricFamilies(in); err != nil {
b.Fatal(err)
}
}
}
// BenchmarkParseProto benchmarks the parsing of a protobuf-format scrape into
// metric family DTOs. Note that this does not build a map of metric families
// (as the text version does), because it is not required for Prometheus
// ingestion either. (However, it is required for the text-format parsing, as
// the metric family might be sprinkled all over the text, while the
// protobuf-format guarantees bundling at one place.)
func BenchmarkParseProto(b *testing.B) {
b.StopTimer()
data, err := ioutil.ReadFile("testdata/protobuf")
if err != nil {
b.Fatal(err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
family := &dto.MetricFamily{}
in := bytes.NewReader(data)
for {
family.Reset()
if _, err := ext.ReadDelimited(in, family); err != nil {
if err == io.EOF {
break
}
b.Fatal(err)
}
}
}
}
// BenchmarkParseProtoGzip is like BenchmarkParseProto above, but parses gzipped
// protobuf format.
func BenchmarkParseProtoGzip(b *testing.B) {
b.StopTimer()
data, err := ioutil.ReadFile("testdata/protobuf.gz")
if err != nil {
b.Fatal(err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
family := &dto.MetricFamily{}
in, err := gzip.NewReader(bytes.NewReader(data))
if err != nil {
b.Fatal(err)
}
for {
family.Reset()
if _, err := ext.ReadDelimited(in, family); err != nil {
if err == io.EOF {
break
}
b.Fatal(err)
}
}
}
}
// BenchmarkParseProtoMap is like BenchmarkParseProto but DOES put the parsed
// metric family DTOs into a map. This is not happening during Prometheus
// ingestion. It is just here to measure the overhead of that map creation and
// separate it from the overhead of the text format parsing.
func BenchmarkParseProtoMap(b *testing.B) {
b.StopTimer()
data, err := ioutil.ReadFile("testdata/protobuf")
if err != nil {
b.Fatal(err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
families := map[string]*dto.MetricFamily{}
in := bytes.NewReader(data)
for {
family := &dto.MetricFamily{}
if _, err := ext.ReadDelimited(in, family); err != nil {
if err == io.EOF {
break
}
b.Fatal(err)
}
families[family.GetName()] = family
}
}
}

View File

@ -0,0 +1,265 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package text contains helper functions to parse and create text-based
// exchange formats. The package currently supports (only) version 0.0.4 of the
// exchange format. Should other versions be supported in the future, some
// versioning scheme has to be applied. Possibilities include separate packages
// or separate functions. The best way depends on the nature of future changes,
// which is the reason why no versioning scheme has been applied prematurely
// here.
package text
import (
"bytes"
"fmt"
"io"
"strings"
dto "github.com/prometheus/client_model/go"
)
// MetricFamilyToText converts a MetricFamily proto message into text format and
// writes the resulting lines to 'out'. It returns the number of bytes written
// and any error encountered. This function does not perform checks on the
// content of the metric and label names, i.e. invalid metric or label names
// will result in invalid text format output.
// This method fulfills the type 'prometheus.encoder'.
func MetricFamilyToText(out io.Writer, in *dto.MetricFamily) (int, error) {
var written int
// Fail-fast checks.
if len(in.Metric) == 0 {
return written, fmt.Errorf("MetricFamily has no metrics: %s", in)
}
name := in.GetName()
if name == "" {
return written, fmt.Errorf("MetricFamily has no name: %s", in)
}
if in.Type == nil {
return written, fmt.Errorf("MetricFamily has no type: %s", in)
}
// Comments, first HELP, then TYPE.
if in.Help != nil {
n, err := fmt.Fprintf(
out, "# HELP %s %s\n",
name, escapeString(*in.Help, false),
)
written += n
if err != nil {
return written, err
}
}
metricType := in.GetType()
n, err := fmt.Fprintf(
out, "# TYPE %s %s\n",
name, strings.ToLower(metricType.String()),
)
written += n
if err != nil {
return written, err
}
// Finally the samples, one line for each.
for _, metric := range in.Metric {
switch metricType {
case dto.MetricType_COUNTER:
if metric.Counter == nil {
return written, fmt.Errorf(
"expected counter in metric %s", metric,
)
}
n, err = writeSample(
name, metric, "", "",
metric.Counter.GetValue(),
out,
)
case dto.MetricType_GAUGE:
if metric.Gauge == nil {
return written, fmt.Errorf(
"expected gauge in metric %s", metric,
)
}
n, err = writeSample(
name, metric, "", "",
metric.Gauge.GetValue(),
out,
)
case dto.MetricType_UNTYPED:
if metric.Untyped == nil {
return written, fmt.Errorf(
"expected untyped in metric %s", metric,
)
}
n, err = writeSample(
name, metric, "", "",
metric.Untyped.GetValue(),
out,
)
case dto.MetricType_SUMMARY:
if metric.Summary == nil {
return written, fmt.Errorf(
"expected summary in metric %s", metric,
)
}
for _, q := range metric.Summary.Quantile {
n, err = writeSample(
name, metric,
"quantile", fmt.Sprint(q.GetQuantile()),
q.GetValue(),
out,
)
written += n
if err != nil {
return written, err
}
}
n, err = writeSample(
name+"_sum", metric, "", "",
metric.Summary.GetSampleSum(),
out,
)
if err != nil {
return written, err
}
written += n
n, err = writeSample(
name+"_count", metric, "", "",
float64(metric.Summary.GetSampleCount()),
out,
)
default:
return written, fmt.Errorf(
"unexpected type in metric %s", metric,
)
}
written += n
if err != nil {
return written, err
}
}
return written, nil
}
// writeSample writes a single sample in text format to out, given the metric
// name, the metric proto message itself, optionally an additional label name
// and value (use empty strings if not required), and the value. The function
// returns the number of bytes written and any error encountered.
func writeSample(
name string,
metric *dto.Metric,
additionalLabelName, additionalLabelValue string,
value float64,
out io.Writer,
) (int, error) {
var written int
n, err := fmt.Fprint(out, name)
written += n
if err != nil {
return written, err
}
n, err = labelPairsToText(
metric.Label,
additionalLabelName, additionalLabelValue,
out,
)
written += n
if err != nil {
return written, err
}
n, err = fmt.Fprintf(out, " %v", value)
written += n
if err != nil {
return written, err
}
if metric.TimestampMs != nil {
n, err = fmt.Fprintf(out, " %v", *metric.TimestampMs)
written += n
if err != nil {
return written, err
}
}
n, err = out.Write([]byte{'\n'})
written += n
if err != nil {
return written, err
}
return written, nil
}
// labelPairsToText converts a slice of LabelPair proto messages plus the
// explicitly given additional label pair into text formatted as required by the
// text format and writes it to 'out'. An empty slice in combination with an
// empty string 'additionalLabelName' results in nothing being
// written. Otherwise, the label pairs are written, escaped as required by the
// text format, and enclosed in '{...}'. The function returns the number of
// bytes written and any error encountered.
func labelPairsToText(
in []*dto.LabelPair,
additionalLabelName, additionalLabelValue string,
out io.Writer,
) (int, error) {
if len(in) == 0 && additionalLabelName == "" {
return 0, nil
}
var written int
separator := '{'
for _, lp := range in {
n, err := fmt.Fprintf(
out, `%c%s="%s"`,
separator, lp.GetName(), escapeString(lp.GetValue(), true),
)
written += n
if err != nil {
return written, err
}
separator = ','
}
if additionalLabelName != "" {
n, err := fmt.Fprintf(
out, `%c%s="%s"`,
separator, additionalLabelName,
escapeString(additionalLabelValue, true),
)
written += n
if err != nil {
return written, err
}
}
n, err := out.Write([]byte{'}'})
written += n
if err != nil {
return written, err
}
return written, nil
}
// escapeString replaces '\' by '\\', new line character by '\n', and - if
// includeDoubleQuote is true - '"' by '\"'.
func escapeString(v string, includeDoubleQuote bool) string {
result := bytes.NewBuffer(make([]byte, 0, len(v)))
for _, c := range v {
switch {
case c == '\\':
result.WriteString(`\\`)
case includeDoubleQuote && c == '"':
result.WriteString(`\"`)
case c == '\n':
result.WriteString(`\n`)
default:
result.WriteRune(c)
}
}
return result.String()
}

View File

@ -0,0 +1,347 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package text
import (
"bytes"
"math"
"strings"
"testing"
"code.google.com/p/goprotobuf/proto"
dto "github.com/prometheus/client_model/go"
)
func testCreate(t testing.TB) {
var scenarios = []struct {
in *dto.MetricFamily
out string
}{
// 0: Counter, NaN as value, timestamp given.
{
in: &dto.MetricFamily{
Name: proto.String("name"),
Help: proto.String("two-line\n doc str\\ing"),
Type: dto.MetricType_COUNTER.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("labelname"),
Value: proto.String("val1"),
},
&dto.LabelPair{
Name: proto.String("basename"),
Value: proto.String("basevalue"),
},
},
Counter: &dto.Counter{
Value: proto.Float64(math.NaN()),
},
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("labelname"),
Value: proto.String("val2"),
},
&dto.LabelPair{
Name: proto.String("basename"),
Value: proto.String("basevalue"),
},
},
Counter: &dto.Counter{
Value: proto.Float64(.23),
},
TimestampMs: proto.Int64(1234567890),
},
},
},
out: `# HELP name two-line\n doc str\\ing
# TYPE name counter
name{labelname="val1",basename="basevalue"} NaN
name{labelname="val2",basename="basevalue"} 0.23 1234567890
`,
},
// 1: Gauge, some escaping required, +Inf as value, multi-byte characters in label values.
{
in: &dto.MetricFamily{
Name: proto.String("gauge_name"),
Help: proto.String("gauge\ndoc\nstr\"ing"),
Type: dto.MetricType_GAUGE.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("name_1"),
Value: proto.String("val with\nnew line"),
},
&dto.LabelPair{
Name: proto.String("name_2"),
Value: proto.String("val with \\backslash and \"quotes\""),
},
},
Gauge: &dto.Gauge{
Value: proto.Float64(math.Inf(+1)),
},
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("name_1"),
Value: proto.String("Björn"),
},
&dto.LabelPair{
Name: proto.String("name_2"),
Value: proto.String("佖佥"),
},
},
Gauge: &dto.Gauge{
Value: proto.Float64(3.14E42),
},
},
},
},
out: `# HELP gauge_name gauge\ndoc\nstr"ing
# TYPE gauge_name gauge
gauge_name{name_1="val with\nnew line",name_2="val with \\backslash and \"quotes\""} +Inf
gauge_name{name_1="Björn",name_2="佖佥"} 3.14e+42
`,
},
// 2: Untyped, no help, one sample with no labels and -Inf as value, another sample with one label.
{
in: &dto.MetricFamily{
Name: proto.String("untyped_name"),
Type: dto.MetricType_UNTYPED.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(math.Inf(-1)),
},
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("name_1"),
Value: proto.String("value 1"),
},
},
Untyped: &dto.Untyped{
Value: proto.Float64(-1.23e-45),
},
},
},
},
out: `# TYPE untyped_name untyped
untyped_name -Inf
untyped_name{name_1="value 1"} -1.23e-45
`,
},
// 3: Summary.
{
in: &dto.MetricFamily{
Name: proto.String("summary_name"),
Help: proto.String("summary docstring"),
Type: dto.MetricType_SUMMARY.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Summary: &dto.Summary{
SampleCount: proto.Uint64(42),
SampleSum: proto.Float64(-3.4567),
Quantile: []*dto.Quantile{
&dto.Quantile{
Quantile: proto.Float64(0.5),
Value: proto.Float64(-1.23),
},
&dto.Quantile{
Quantile: proto.Float64(0.9),
Value: proto.Float64(.2342354),
},
&dto.Quantile{
Quantile: proto.Float64(0.99),
Value: proto.Float64(0),
},
},
},
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("name_1"),
Value: proto.String("value 1"),
},
&dto.LabelPair{
Name: proto.String("name_2"),
Value: proto.String("value 2"),
},
},
Summary: &dto.Summary{
SampleCount: proto.Uint64(4711),
SampleSum: proto.Float64(2010.1971),
Quantile: []*dto.Quantile{
&dto.Quantile{
Quantile: proto.Float64(0.5),
Value: proto.Float64(1),
},
&dto.Quantile{
Quantile: proto.Float64(0.9),
Value: proto.Float64(2),
},
&dto.Quantile{
Quantile: proto.Float64(0.99),
Value: proto.Float64(3),
},
},
},
},
},
},
out: `# HELP summary_name summary docstring
# TYPE summary_name summary
summary_name{quantile="0.5"} -1.23
summary_name{quantile="0.9"} 0.2342354
summary_name{quantile="0.99"} 0
summary_name_sum -3.4567
summary_name_count 42
summary_name{name_1="value 1",name_2="value 2",quantile="0.5"} 1
summary_name{name_1="value 1",name_2="value 2",quantile="0.9"} 2
summary_name{name_1="value 1",name_2="value 2",quantile="0.99"} 3
summary_name_sum{name_1="value 1",name_2="value 2"} 2010.1971
summary_name_count{name_1="value 1",name_2="value 2"} 4711
`,
},
}
for i, scenario := range scenarios {
out := bytes.NewBuffer(make([]byte, 0, len(scenario.out)))
n, err := MetricFamilyToText(out, scenario.in)
if err != nil {
t.Errorf("%d. error: %s", i, err)
continue
}
if expected, got := len(scenario.out), n; expected != got {
t.Errorf(
"%d. expected %d bytes written, got %d",
i, expected, got,
)
}
if expected, got := scenario.out, out.String(); expected != got {
t.Errorf(
"%d. expected out=%q, got %q",
i, expected, got,
)
}
}
}
func TestCreate(t *testing.T) {
testCreate(t)
}
func BenchmarkCreate(b *testing.B) {
for i := 0; i < b.N; i++ {
testCreate(b)
}
}
func testCreateError(t testing.TB) {
var scenarios = []struct {
in *dto.MetricFamily
err string
}{
// 0: No metric.
{
in: &dto.MetricFamily{
Name: proto.String("name"),
Help: proto.String("doc string"),
Type: dto.MetricType_COUNTER.Enum(),
Metric: []*dto.Metric{},
},
err: "MetricFamily has no metrics",
},
// 1: No metric name.
{
in: &dto.MetricFamily{
Help: proto.String("doc string"),
Type: dto.MetricType_UNTYPED.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(math.Inf(-1)),
},
},
},
},
err: "MetricFamily has no name",
},
// 2: No metric type.
{
in: &dto.MetricFamily{
Name: proto.String("name"),
Help: proto.String("doc string"),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(math.Inf(-1)),
},
},
},
},
err: "MetricFamily has no type",
},
// 3: Wrong type.
{
in: &dto.MetricFamily{
Name: proto.String("name"),
Help: proto.String("doc string"),
Type: dto.MetricType_COUNTER.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(math.Inf(-1)),
},
},
},
},
err: "expected counter in metric",
},
}
for i, scenario := range scenarios {
var out bytes.Buffer
_, err := MetricFamilyToText(&out, scenario.in)
if err == nil {
t.Errorf("%d. expected error, got nil", i)
continue
}
if expected, got := scenario.err, err.Error(); strings.Index(got, expected) != 0 {
t.Errorf(
"%d. expected error starting with %q, got %q",
i, expected, got,
)
}
}
}
func TestCreateError(t *testing.T) {
testCreateError(t)
}
func BenchmarkCreateError(b *testing.B) {
for i := 0; i < b.N; i++ {
testCreateError(b)
}
}

View File

@ -0,0 +1,659 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package text
import (
"bufio"
"bytes"
"fmt"
"io"
"math"
"strconv"
"strings"
dto "github.com/prometheus/client_model/go"
"code.google.com/p/goprotobuf/proto"
"github.com/prometheus/client_golang/model"
)
// A stateFn is a function that represents a state in a state machine. By
// executing it, the state is progressed to the next state. The stateFn returns
// another stateFn, which represents the new state. The end state is represented
// by nil.
type stateFn func() stateFn
// ParseError signals errors while parsing the simple and flat text-based
// exchange format.
type ParseError struct {
Line int
Msg string
}
// Error implements the error interface.
func (e ParseError) Error() string {
return fmt.Sprintf("text format parsing error in line %d: %s", e.Line, e.Msg)
}
// Parser is used to parse the simple and flat text-based exchange format. Its
// nil value is ready to use.
type Parser struct {
metricFamiliesByName map[string]*dto.MetricFamily
buf *bufio.Reader // Where the parsed input is read through.
err error // Most recent error.
lineCount int // Tracks the line count for error messages.
currentByte byte // The most recent byte read.
currentToken bytes.Buffer // Re-used each time a token has to be gathered from multiple bytes.
currentMF *dto.MetricFamily
currentMetric *dto.Metric
currentLabelPair *dto.LabelPair
// The remaining member variables are only used for summaries.
summaries map[uint64]*dto.Metric // Key is created with LabelsToSignature.
currentLabels map[string]string // All labels including '__name__' but excluding 'quantile'.
currentQuantile float64
// These tell us if the currently processed line ends on '_count' or
// '_sum' respectively and belong to a summary, representing the sample
// count and sum of that summary.
currentIsSummaryCount, currentIsSummarySum bool
}
// TextToMetricFamilies reads 'in' as the simple and flat text-based exchange
// format and creates MetricFamily proto messages. It returns the MetricFamily
// proto messages in a map where the metric names are the keys, along with any
// error encountered.
//
// If the input contains duplicate metrics (i.e. lines with the same metric name
// and exactly the same label set), the resulting MetricFamily will contain
// duplicate Metric proto messages. Similar is true for duplicate label
// names. Checks for duplicates have to be performed separately, if required.
//
// Summaries are a rather special beast. You would probably not use them in the
// simple text format anyway. This method can deal with summaries if they are
// presented in exactly the way the text.Create function creates them.
//
// This method must not be called concurrently. If you want to parse different
// input concurrently, instantiate a separate Parser for each goroutine.
func (p *Parser) TextToMetricFamilies(in io.Reader) (map[string]*dto.MetricFamily, error) {
p.reset(in)
for nextState := p.startOfLine; nextState != nil; nextState = nextState() {
// Magic happens here...
}
// Get rid of empty metric families.
for k, mf := range p.metricFamiliesByName {
if len(mf.GetMetric()) == 0 {
delete(p.metricFamiliesByName, k)
}
}
return p.metricFamiliesByName, p.err
}
func (p *Parser) reset(in io.Reader) {
p.metricFamiliesByName = map[string]*dto.MetricFamily{}
if p.buf == nil {
p.buf = bufio.NewReader(in)
} else {
p.buf.Reset(in)
}
p.err = nil
p.lineCount = 0
if p.summaries == nil || len(p.summaries) > 0 {
p.summaries = map[uint64]*dto.Metric{}
}
p.currentQuantile = math.NaN()
}
// startOfLine represents the state where the next byte read from p.buf is the
// start of a line (or whitespace leading up to it).
func (p *Parser) startOfLine() stateFn {
p.lineCount++
if p.skipBlankTab(); p.err != nil {
// End of input reached. This is the only case where
// that is not an error but a signal that we are done.
p.err = nil
return nil
}
switch p.currentByte {
case '#':
return p.startComment
case '\n':
return p.startOfLine // Empty line, start the next one.
}
return p.readingMetricName
}
// startComment represents the state where the next byte read from p.buf is the
// start of a comment (or whitespace leading up to it).
func (p *Parser) startComment() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '\n' {
return p.startOfLine
}
if p.readTokenUntilWhitespace(); p.err != nil {
return nil // Unexpected end of input.
}
// If we have hit the end of line already, there is nothing left
// to do. This is not considered a syntax error.
if p.currentByte == '\n' {
return p.startOfLine
}
keyword := p.currentToken.String()
if keyword != "HELP" && keyword != "TYPE" {
// Generic comment, ignore by fast forwarding to end of line.
for p.currentByte != '\n' {
if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil {
return nil // Unexpected end of input.
}
}
return p.startOfLine
}
// There is something. Next has to be a metric name.
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.readTokenAsMetricName(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '\n' {
// At the end of the line already.
// Again, this is not considered a syntax error.
return p.startOfLine
}
if !isBlankOrTab(p.currentByte) {
p.parseError("invalid metric name in comment")
return nil
}
p.setOrCreateCurrentMF()
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '\n' {
// At the end of the line already.
// Again, this is not considered a syntax error.
return p.startOfLine
}
switch keyword {
case "HELP":
return p.readingHelp
case "TYPE":
return p.readingType
}
panic(fmt.Sprintf("code error: unexpected keyword %q", keyword))
}
// readingMetricName represents the state where the last byte read (now in
// p.currentByte) is the first byte of a metric name.
func (p *Parser) readingMetricName() stateFn {
if p.readTokenAsMetricName(); p.err != nil {
return nil
}
if p.currentToken.Len() == 0 {
p.parseError("invalid metric name")
return nil
}
p.setOrCreateCurrentMF()
// Now is the time to fix the type if it hasn't happened yet.
if p.currentMF.Type == nil {
p.currentMF.Type = dto.MetricType_UNTYPED.Enum()
}
p.currentMetric = &dto.Metric{}
// Do not append the newly created currentMetric to
// currentMF.Metric right now. First wait if this is a summary,
// and the metric exists already, which we can only know after
// having read all the labels.
if p.skipBlankTabIfCurrentBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
return p.readingLabels
}
// readingLabels represents the state where the last byte read (now in
// p.currentByte) is either the first byte of the label set (i.e. a '{'), or the
// first byte of the value (otherwise).
func (p *Parser) readingLabels() stateFn {
// Alas, summaries are really special... We have to reset the
// currentLabels map and the currentQuantile before starting to
// read labels.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
p.currentLabels = map[string]string{}
p.currentLabels[string(model.MetricNameLabel)] = p.currentMF.GetName()
p.currentQuantile = math.NaN()
}
if p.currentByte != '{' {
return p.readingValue
}
return p.startLabelName
}
// startLabelName represents the state where the next byte read from p.buf is
// the start of a label name (or whitespace leading up to it).
func (p *Parser) startLabelName() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte == '}' {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
return p.readingValue
}
if p.readTokenAsLabelName(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentToken.Len() == 0 {
p.parseError(fmt.Sprintf("invalid label name for metric %q", p.currentMF.GetName()))
return nil
}
p.currentLabelPair = &dto.LabelPair{Name: proto.String(p.currentToken.String())}
if p.currentLabelPair.GetName() == string(model.MetricNameLabel) {
p.parseError(fmt.Sprintf("label name %q is reserved", model.MetricNameLabel))
return nil
}
// Once more, special summary treatment... Don't add 'quantile'
// labels to 'real' labels.
if p.currentMF.GetType() != dto.MetricType_SUMMARY ||
p.currentLabelPair.GetName() != "quantile" {
p.currentMetric.Label = append(p.currentMetric.Label, p.currentLabelPair)
}
if p.skipBlankTabIfCurrentBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte != '=' {
p.parseError(fmt.Sprintf("expected '=' after label name, found %q", p.currentByte))
return nil
}
return p.startLabelValue
}
// startLabelValue represents the state where the next byte read from p.buf is
// the start of a (quoted) label value (or whitespace leading up to it).
func (p *Parser) startLabelValue() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentByte != '"' {
p.parseError(fmt.Sprintf("expected '\"' at start of label value, found %q", p.currentByte))
return nil
}
if p.readTokenAsLabelValue(); p.err != nil {
return nil
}
p.currentLabelPair.Value = proto.String(p.currentToken.String())
// Once more, special treatment of summaries:
// - Quantile labels are special, will result in dto.Quantile later.
// - Other labels have to be added to currentLabels for signature calculation.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
if p.currentLabelPair.GetName() == "quantile" {
if p.currentQuantile, p.err = strconv.ParseFloat(p.currentLabelPair.GetValue(), 64); p.err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected float as value for quantile label, got %q", p.currentLabelPair.GetValue()))
return nil
}
} else {
p.currentLabels[p.currentLabelPair.GetName()] = p.currentLabelPair.GetValue()
}
}
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
switch p.currentByte {
case ',':
return p.startLabelName
case '}':
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
return p.readingValue
default:
p.parseError(fmt.Sprintf("unexpected end of label value %q", p.currentLabelPair.Value))
return nil
}
}
// readingValue represents the state where the last byte read (now in
// p.currentByte) is the first byte of the sample value (i.e. a float).
func (p *Parser) readingValue() stateFn {
// When we are here, we have read all the labels, so for the
// infamous special case of a summary, we can finally find out
// if the metric already exists.
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
signature := model.LabelsToSignature(p.currentLabels)
if summary := p.summaries[signature]; summary != nil {
p.currentMetric = summary
} else {
p.summaries[signature] = p.currentMetric
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
} else {
p.currentMF.Metric = append(p.currentMF.Metric, p.currentMetric)
}
if p.readTokenUntilWhitespace(); p.err != nil {
return nil // Unexpected end of input.
}
value, err := strconv.ParseFloat(p.currentToken.String(), 64)
if err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected float as value, got %q", p.currentToken.String()))
return nil
}
switch p.currentMF.GetType() {
case dto.MetricType_COUNTER:
p.currentMetric.Counter = &dto.Counter{Value: proto.Float64(value)}
case dto.MetricType_GAUGE:
p.currentMetric.Gauge = &dto.Gauge{Value: proto.Float64(value)}
case dto.MetricType_UNTYPED:
p.currentMetric.Untyped = &dto.Untyped{Value: proto.Float64(value)}
case dto.MetricType_SUMMARY:
// *sigh*
if p.currentMetric.Summary == nil {
p.currentMetric.Summary = &dto.Summary{}
}
switch {
case p.currentIsSummaryCount:
p.currentMetric.Summary.SampleCount = proto.Uint64(uint64(value))
case p.currentIsSummarySum:
p.currentMetric.Summary.SampleSum = proto.Float64(value)
case !math.IsNaN(p.currentQuantile):
p.currentMetric.Summary.Quantile = append(
p.currentMetric.Summary.Quantile,
&dto.Quantile{
Quantile: proto.Float64(p.currentQuantile),
Value: proto.Float64(value),
},
)
}
default:
p.err = fmt.Errorf("unexpected type for metric name %q", p.currentMF.GetName())
}
if p.currentByte == '\n' {
return p.startOfLine
}
return p.startTimestamp
}
// startTimestamp represents the state where the next byte read from p.buf is
// the start of the timestamp (or whitespace leading up to it).
func (p *Parser) startTimestamp() stateFn {
if p.skipBlankTab(); p.err != nil {
return nil // Unexpected end of input.
}
if p.readTokenUntilWhitespace(); p.err != nil {
return nil // Unexpected end of input.
}
timestamp, err := strconv.ParseInt(p.currentToken.String(), 10, 64)
if err != nil {
// Create a more helpful error message.
p.parseError(fmt.Sprintf("expected integer as timestamp, got %q", p.currentToken.String()))
return nil
}
p.currentMetric.TimestampMs = proto.Int64(timestamp)
if p.readTokenUntilNewline(false); p.err != nil {
return nil // Unexpected end of input.
}
if p.currentToken.Len() > 0 {
p.parseError(fmt.Sprintf("spurious string after timestamp: %q", p.currentToken.String()))
return nil
}
return p.startOfLine
}
// readingHelp represents the state where the last byte read (now in
// p.currentByte) is the first byte of the docstring after 'HELP'.
func (p *Parser) readingHelp() stateFn {
if p.currentMF.Help != nil {
p.parseError(fmt.Sprintf("second HELP line for metric name %q", p.currentMF.GetName()))
return nil
}
// Rest of line is the docstring.
if p.readTokenUntilNewline(true); p.err != nil {
return nil // Unexpected end of input.
}
p.currentMF.Help = proto.String(p.currentToken.String())
return p.startOfLine
}
// readingType represents the state where the last byte read (now in
// p.currentByte) is the first byte of the type hint after 'HELP'.
func (p *Parser) readingType() stateFn {
if p.currentMF.Type != nil {
p.parseError(fmt.Sprintf("second TYPE line for metric name %q, or TYPE reported after samples", p.currentMF.GetName()))
return nil
}
// Rest of line is the type.
if p.readTokenUntilNewline(false); p.err != nil {
return nil // Unexpected end of input.
}
metricType, ok := dto.MetricType_value[strings.ToUpper(p.currentToken.String())]
if !ok {
p.parseError(fmt.Sprintf("unknown metric type %q", p.currentToken.String()))
return nil
}
p.currentMF.Type = dto.MetricType(metricType).Enum()
return p.startOfLine
}
// parseError sets p.err to a ParseError at the current line with the given
// message.
func (p *Parser) parseError(msg string) {
p.err = ParseError{
Line: p.lineCount,
Msg: msg,
}
}
// skipBlankTab reads (and discards) bytes from p.buf until it encounters a byte
// that is neither ' ' nor '\t'. That byte is left in p.currentByte.
func (p *Parser) skipBlankTab() {
for {
if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil || !isBlankOrTab(p.currentByte) {
return
}
}
}
// skipBlankTabIfCurrentBlankTab works exactly as skipBlankTab but doesn't do
// anything if p.currentByte is neither ' ' nor '\t'.
func (p *Parser) skipBlankTabIfCurrentBlankTab() {
if isBlankOrTab(p.currentByte) {
p.skipBlankTab()
}
}
// readTokenUntilWhitespace copies bytes from p.buf into p.currentToken. The
// first byte considered is the byte already read (now in p.currentByte). The
// first whitespace byte encountered is still copied into p.currentByte, but not
// into p.currentToken.
func (p *Parser) readTokenUntilWhitespace() {
p.currentToken.Reset()
for p.err == nil && !isBlankOrTab(p.currentByte) && p.currentByte != '\n' {
p.currentToken.WriteByte(p.currentByte)
p.currentByte, p.err = p.buf.ReadByte()
}
}
// readTokenUntilNewline copies bytes from p.buf into p.currentToken. The first
// byte considered is the byte already read (now in p.currentByte). The first
// newline byte encountered is still copied into p.currentByte, but not into
// p.currentToken. If recognizeEscapeSequence is true, two escape sequences are
// recognized: '\\' tranlates into '\', and '\n' into a line-feed character. All
// other escape sequences are invalid and cause an error.
func (p *Parser) readTokenUntilNewline(recognizeEscapeSequence bool) {
p.currentToken.Reset()
escaped := false
for p.err == nil {
if recognizeEscapeSequence && escaped {
switch p.currentByte {
case '\\':
p.currentToken.WriteByte(p.currentByte)
case 'n':
p.currentToken.WriteByte('\n')
default:
p.parseError(fmt.Sprintf("invalid escape sequence '\\%c'", p.currentByte))
return
}
escaped = false
} else {
switch p.currentByte {
case '\n':
return
case '\\':
escaped = true
default:
p.currentToken.WriteByte(p.currentByte)
}
}
p.currentByte, p.err = p.buf.ReadByte()
}
}
// readTokenAsMetricName copies a metric name from p.buf into p.currentToken.
// The first byte considered is the byte already read (now in p.currentByte).
// The first byte not part of a metric name is still copied into p.currentByte,
// but not into p.currentToken.
func (p *Parser) readTokenAsMetricName() {
p.currentToken.Reset()
if !isValidMetricNameStart(p.currentByte) {
return
}
for {
p.currentToken.WriteByte(p.currentByte)
p.currentByte, p.err = p.buf.ReadByte()
if p.err != nil || !isValidMetricNameContinuation(p.currentByte) {
return
}
}
}
// readTokenAsLabelName copies a label name from p.buf into p.currentToken.
// The first byte considered is the byte already read (now in p.currentByte).
// The first byte not part of a label name is still copied into p.currentByte,
// but not into p.currentToken.
func (p *Parser) readTokenAsLabelName() {
p.currentToken.Reset()
if !isValidLabelNameStart(p.currentByte) {
return
}
for {
p.currentToken.WriteByte(p.currentByte)
p.currentByte, p.err = p.buf.ReadByte()
if p.err != nil || !isValidLabelNameContinuation(p.currentByte) {
return
}
}
}
// readTokenAsLabelValue copies a label value from p.buf into p.currentToken.
// In contrast to the other 'readTokenAs...' functions, which start with the
// last read byte in p.currentByte, this method ignores p.currentByte and starts
// with reading a new byte from p.buf. The first byte not part of a label value
// is still copied into p.currentByte, but not into p.currentToken.
func (p *Parser) readTokenAsLabelValue() {
p.currentToken.Reset()
escaped := false
for {
if p.currentByte, p.err = p.buf.ReadByte(); p.err != nil {
return
}
if escaped {
switch p.currentByte {
case '"', '\\':
p.currentToken.WriteByte(p.currentByte)
case 'n':
p.currentToken.WriteByte('\n')
default:
p.parseError(fmt.Sprintf("invalid escape sequence '\\%c'", p.currentByte))
return
}
escaped = false
continue
}
switch p.currentByte {
case '"':
return
case '\n':
p.parseError(fmt.Sprintf("label value %q contains unescaped new-line", p.currentToken.String()))
return
case '\\':
escaped = true
default:
p.currentToken.WriteByte(p.currentByte)
}
}
}
func (p *Parser) setOrCreateCurrentMF() {
p.currentIsSummaryCount = false
p.currentIsSummarySum = false
name := p.currentToken.String()
if p.currentMF = p.metricFamiliesByName[name]; p.currentMF != nil {
return
}
// Try out if this is a _sum or _count for a summary.
summaryName := summaryMetricName(name)
if p.currentMF = p.metricFamiliesByName[summaryName]; p.currentMF != nil {
if p.currentMF.GetType() == dto.MetricType_SUMMARY {
if isCount(name) {
p.currentIsSummaryCount = true
}
if isSum(name) {
p.currentIsSummarySum = true
}
return
}
}
p.currentMF = &dto.MetricFamily{Name: proto.String(name)}
p.metricFamiliesByName[name] = p.currentMF
}
func isValidLabelNameStart(b byte) bool {
return (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') || b == '_'
}
func isValidLabelNameContinuation(b byte) bool {
return isValidLabelNameStart(b) || (b >= '0' && b <= '9')
}
func isValidMetricNameStart(b byte) bool {
return isValidLabelNameStart(b) || b == ':'
}
func isValidMetricNameContinuation(b byte) bool {
return isValidLabelNameContinuation(b) || b == ':'
}
func isBlankOrTab(b byte) bool {
return b == ' ' || b == '\t'
}
func isCount(name string) bool {
return len(name) > 6 && name[len(name)-6:] == "_count"
}
func isSum(name string) bool {
return len(name) > 4 && name[len(name)-4:] == "_sum"
}
func summaryMetricName(name string) string {
switch {
case isCount(name):
return name[:len(name)-6]
case isSum(name):
return name[:len(name)-4]
default:
return name
}
}

View File

@ -0,0 +1,529 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package text
import (
"math"
"strings"
"testing"
"code.google.com/p/goprotobuf/proto"
dto "github.com/prometheus/client_model/go"
)
var parser Parser
func testParse(t testing.TB) {
var scenarios = []struct {
in string
out []*dto.MetricFamily
}{
// 0: Empty lines as input.
{
in: `
`,
out: []*dto.MetricFamily{},
},
// 1: Minimal case.
{
in: `
minimal_metric 1.234
another_metric -3e3 103948
# Even that:
no_labels{} 3
# HELP line for non-existing metric will be ignored.
`,
out: []*dto.MetricFamily{
&dto.MetricFamily{
Name: proto.String("minimal_metric"),
Type: dto.MetricType_UNTYPED.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(1.234),
},
},
},
},
&dto.MetricFamily{
Name: proto.String("another_metric"),
Type: dto.MetricType_UNTYPED.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(-3e3),
},
TimestampMs: proto.Int64(103948),
},
},
},
&dto.MetricFamily{
Name: proto.String("no_labels"),
Type: dto.MetricType_UNTYPED.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(3),
},
},
},
},
},
},
// 2: Counters & gauges, docstrings, various whitespace, escape sequences.
{
in: `
# A normal comment.
#
# TYPE name counter
name{labelname="val1",basename="basevalue"} NaN
name {labelname="val2",basename="base\"v\\al\nue"} 0.23 1234567890
# HELP name two-line\n doc str\\ing
# HELP name2 doc str"ing 2
# TYPE name2 gauge
name2{labelname="val2" ,basename = "basevalue2" } +Inf 54321
name2{ labelname = "val1" , }-Inf
`,
out: []*dto.MetricFamily{
&dto.MetricFamily{
Name: proto.String("name"),
Help: proto.String("two-line\n doc str\\ing"),
Type: dto.MetricType_COUNTER.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("labelname"),
Value: proto.String("val1"),
},
&dto.LabelPair{
Name: proto.String("basename"),
Value: proto.String("basevalue"),
},
},
Counter: &dto.Counter{
Value: proto.Float64(math.NaN()),
},
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("labelname"),
Value: proto.String("val2"),
},
&dto.LabelPair{
Name: proto.String("basename"),
Value: proto.String("base\"v\\al\nue"),
},
},
Counter: &dto.Counter{
Value: proto.Float64(.23),
},
TimestampMs: proto.Int64(1234567890),
},
},
},
&dto.MetricFamily{
Name: proto.String("name2"),
Help: proto.String("doc str\"ing 2"),
Type: dto.MetricType_GAUGE.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("labelname"),
Value: proto.String("val2"),
},
&dto.LabelPair{
Name: proto.String("basename"),
Value: proto.String("basevalue2"),
},
},
Gauge: &dto.Gauge{
Value: proto.Float64(math.Inf(+1)),
},
TimestampMs: proto.Int64(54321),
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("labelname"),
Value: proto.String("val1"),
},
},
Gauge: &dto.Gauge{
Value: proto.Float64(math.Inf(-1)),
},
},
},
},
},
},
// 3: The evil summary, mixed with other types and funny comments.
{
in: `
# TYPE my_summary summary
my_summary{n1="val1",quantile="0.5"} 110
decoy -1 -2
my_summary{n1="val1",quantile="0.9"} 140 1
my_summary_count{n1="val1"} 42
# Latest timestamp wins in case of a summary.
my_summary_sum{n1="val1"} 4711 2
fake_sum{n1="val1"} 2001
# TYPE another_summary summary
another_summary_count{n2="val2",n1="val1"} 20
my_summary_count{n2="val2",n1="val1"} 5 5
another_summary{n1="val1",n2="val2",quantile=".3"} -1.2
my_summary_sum{n1="val2"} 08 15
my_summary{n1="val3", quantile="0.2"} 4711
my_summary{n1="val1",n2="val2",quantile="-12.34",} NaN
# some
# funny comments
# HELP
# HELP
# HELP my_summary
# HELP my_summary
`,
out: []*dto.MetricFamily{
&dto.MetricFamily{
Name: proto.String("fake_sum"),
Type: dto.MetricType_UNTYPED.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("n1"),
Value: proto.String("val1"),
},
},
Untyped: &dto.Untyped{
Value: proto.Float64(2001),
},
},
},
},
&dto.MetricFamily{
Name: proto.String("decoy"),
Type: dto.MetricType_UNTYPED.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Untyped: &dto.Untyped{
Value: proto.Float64(-1),
},
TimestampMs: proto.Int64(-2),
},
},
},
&dto.MetricFamily{
Name: proto.String("my_summary"),
Type: dto.MetricType_SUMMARY.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("n1"),
Value: proto.String("val1"),
},
},
Summary: &dto.Summary{
SampleCount: proto.Uint64(42),
SampleSum: proto.Float64(4711),
Quantile: []*dto.Quantile{
&dto.Quantile{
Quantile: proto.Float64(0.5),
Value: proto.Float64(110),
},
&dto.Quantile{
Quantile: proto.Float64(0.9),
Value: proto.Float64(140),
},
},
},
TimestampMs: proto.Int64(2),
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("n2"),
Value: proto.String("val2"),
},
&dto.LabelPair{
Name: proto.String("n1"),
Value: proto.String("val1"),
},
},
Summary: &dto.Summary{
SampleCount: proto.Uint64(5),
Quantile: []*dto.Quantile{
&dto.Quantile{
Quantile: proto.Float64(-12.34),
Value: proto.Float64(math.NaN()),
},
},
},
TimestampMs: proto.Int64(5),
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("n1"),
Value: proto.String("val2"),
},
},
Summary: &dto.Summary{
SampleSum: proto.Float64(8),
},
TimestampMs: proto.Int64(15),
},
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("n1"),
Value: proto.String("val3"),
},
},
Summary: &dto.Summary{
Quantile: []*dto.Quantile{
&dto.Quantile{
Quantile: proto.Float64(0.2),
Value: proto.Float64(4711),
},
},
},
},
},
},
&dto.MetricFamily{
Name: proto.String("another_summary"),
Type: dto.MetricType_SUMMARY.Enum(),
Metric: []*dto.Metric{
&dto.Metric{
Label: []*dto.LabelPair{
&dto.LabelPair{
Name: proto.String("n2"),
Value: proto.String("val2"),
},
&dto.LabelPair{
Name: proto.String("n1"),
Value: proto.String("val1"),
},
},
Summary: &dto.Summary{
SampleCount: proto.Uint64(20),
Quantile: []*dto.Quantile{
&dto.Quantile{
Quantile: proto.Float64(0.3),
Value: proto.Float64(-1.2),
},
},
},
},
},
},
},
},
}
for i, scenario := range scenarios {
out, err := parser.TextToMetricFamilies(strings.NewReader(scenario.in))
if err != nil {
t.Errorf("%d. error: %s", i, err)
continue
}
if expected, got := len(scenario.out), len(out); expected != got {
t.Errorf(
"%d. expected %d MetricFamilies, got %d",
i, expected, got,
)
}
for _, expected := range scenario.out {
got, ok := out[expected.GetName()]
if !ok {
t.Errorf(
"%d. expected MetricFamily %q, found none",
i, expected.GetName(),
)
continue
}
if expected.String() != got.String() {
t.Errorf(
"%d. expected MetricFamily %s, got %s",
i, expected, got,
)
}
}
}
}
func TestParse(t *testing.T) {
testParse(t)
}
func BenchmarkParse(b *testing.B) {
for i := 0; i < b.N; i++ {
testParse(b)
}
}
func testParseError(t testing.TB) {
var scenarios = []struct {
in string
err string
}{
// 0: No new-line at end of input.
{
in: `bla 3.14`,
err: "EOF",
},
// 1: Invalid escape sequence in label value.
{
in: `metric{label="\t"} 3.14`,
err: "text format parsing error in line 1: invalid escape sequence",
},
// 2: Newline in label value.
{
in: `
metric{label="new
line"} 3.14
`,
err: `text format parsing error in line 2: label value "new" contains unescaped new-line`,
},
// 3:
{
in: `metric{@="bla"} 3.14`,
err: "text format parsing error in line 1: invalid label name for metric",
},
// 4:
{
in: `metric{__name__="bla"} 3.14`,
err: `text format parsing error in line 1: label name "__name__" is reserved`,
},
// 5:
{
in: `metric{label+="bla"} 3.14`,
err: "text format parsing error in line 1: expected '=' after label name",
},
// 6:
{
in: `metric{label=bla} 3.14`,
err: "text format parsing error in line 1: expected '\"' at start of label value",
},
// 7:
{
in: `
# TYPE metric summary
metric{quantile="bla"} 3.14
`,
err: "text format parsing error in line 3: expected float as value for quantile label",
},
// 8:
{
in: `metric{label="bla"+} 3.14`,
err: "text format parsing error in line 1: unexpected end of label value",
},
// 9:
{
in: `metric{label="bla"} 3.14 2.72
`,
err: "text format parsing error in line 1: expected integer as timestamp",
},
// 10:
{
in: `metric{label="bla"} 3.14 2 3
`,
err: "text format parsing error in line 1: spurious string after timestamp",
},
// 11:
{
in: `metric{label="bla"} blubb
`,
err: "text format parsing error in line 1: expected float as value",
},
// 12:
{
in: `
# HELP metric one
# HELP metric two
`,
err: "text format parsing error in line 3: second HELP line for metric name",
},
// 13:
{
in: `
# TYPE metric counter
# TYPE metric untyped
`,
err: `text format parsing error in line 3: second TYPE line for metric name "metric", or TYPE reported after samples`,
},
// 14:
{
in: `
metric 4.12
# TYPE metric counter
`,
err: `text format parsing error in line 3: second TYPE line for metric name "metric", or TYPE reported after samples`,
},
// 14:
{
in: `
# TYPE metric bla
`,
err: "text format parsing error in line 2: unknown metric type",
},
// 15:
{
in: `
# TYPE met-ric
`,
err: "text format parsing error in line 2: invalid metric name in comment",
},
// 16:
{
in: `@invalidmetric{label="bla"} 3.14 2`,
err: "text format parsing error in line 1: invalid metric name",
},
// 17:
{
in: `{label="bla"} 3.14 2`,
err: "text format parsing error in line 1: invalid metric name",
},
}
for i, scenario := range scenarios {
_, err := parser.TextToMetricFamilies(strings.NewReader(scenario.in))
if err == nil {
t.Errorf("%d. expected error, got nil", i)
continue
}
if expected, got := scenario.err, err.Error(); strings.Index(got, expected) != 0 {
t.Errorf(
"%d. expected error starting with %q, got %q",
i, expected, got,
)
}
}
}
func TestParseError(t *testing.T) {
testParseError(t)
}
func BenchmarkParseError(b *testing.B) {
for i := 0; i < b.N; i++ {
testParseError(b)
}
}

View File

@ -0,0 +1,43 @@
// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package text
import (
"fmt"
"io"
"code.google.com/p/goprotobuf/proto"
"github.com/matttproud/golang_protobuf_extensions/ext"
dto "github.com/prometheus/client_model/go"
)
// WriteProtoDelimited writes the MetricFamily to the writer in delimited
// protobuf format and returns the number of bytes written and any error
// encountered.
func WriteProtoDelimited(w io.Writer, p *dto.MetricFamily) (int, error) {
return ext.WriteDelimited(w, p)
}
// WriteProtoText writes the MetricFamily to the writer in text format and
// returns the number of bytes written and any error encountered.
func WriteProtoText(w io.Writer, p *dto.MetricFamily) (int, error) {
return fmt.Fprintf(w, "%s\n", proto.MarshalTextString(p))
}
// WriteProtoCompactText writes the MetricFamily to the writer in compact text
// format and returns the number of bytes written and any error encountered.
func WriteProtoCompactText(w io.Writer, p *dto.MetricFamily) (int, error) {
return fmt.Fprintf(w, "%s\n", p)
}

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More