|
|
|
@@ -33,17 +33,17 @@ import (
|
|
|
|
|
"k8s.io/kubernetes/pkg/kubelet/gpu"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
// TODO: If use NVML in the future, the implementation could be more complex,
|
|
|
|
|
// but also more powerful!
|
|
|
|
|
|
|
|
|
|
// TODO: rework to use Nvidia's NVML, which is more complex, but also provides more fine-grained information and stats.
|
|
|
|
|
const (
|
|
|
|
|
// All NVIDIA GPUs cards should be mounted with nvidiactl and nvidia-uvm
|
|
|
|
|
// If the driver installed correctly, the 2 devices must be there.
|
|
|
|
|
NvidiaCtlDevice string = "/dev/nvidiactl"
|
|
|
|
|
NvidiaUVMDevice string = "/dev/nvidia-uvm"
|
|
|
|
|
devDirectory = "/dev"
|
|
|
|
|
nvidiaDeviceRE = `^nvidia[0-9]*$`
|
|
|
|
|
nvidiaFullpathRE = `^/dev/nvidia[0-9]*$`
|
|
|
|
|
// If the driver installed correctly, the 2 devices will be there.
|
|
|
|
|
nvidiaCtlDevice string = "/dev/nvidiactl"
|
|
|
|
|
nvidiaUVMDevice string = "/dev/nvidia-uvm"
|
|
|
|
|
// Optional device.
|
|
|
|
|
nvidiaUVMToolsDevice string = "/dev/nvidia-uvm-tools"
|
|
|
|
|
devDirectory = "/dev"
|
|
|
|
|
nvidiaDeviceRE = `^nvidia[0-9]*$`
|
|
|
|
|
nvidiaFullpathRE = `^/dev/nvidia[0-9]*$`
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
type activePodsLister interface {
|
|
|
|
@@ -55,8 +55,9 @@ type activePodsLister interface {
|
|
|
|
|
type nvidiaGPUManager struct {
|
|
|
|
|
sync.Mutex
|
|
|
|
|
// All gpus available on the Node
|
|
|
|
|
allGPUs sets.String
|
|
|
|
|
allocated *podGPUs
|
|
|
|
|
allGPUs sets.String
|
|
|
|
|
allocated *podGPUs
|
|
|
|
|
defaultDevices []string
|
|
|
|
|
// The interface which could get GPU mapping from all the containers.
|
|
|
|
|
// TODO: Should make this independent of Docker in the future.
|
|
|
|
|
dockerClient dockertools.DockerInterface
|
|
|
|
@@ -65,35 +66,47 @@ type nvidiaGPUManager struct {
|
|
|
|
|
|
|
|
|
|
// NewNvidiaGPUManager returns a GPUManager that manages local Nvidia GPUs.
|
|
|
|
|
// TODO: Migrate to use pod level cgroups and make it generic to all runtimes.
|
|
|
|
|
func NewNvidiaGPUManager(activePodsLister activePodsLister, dockerClient dockertools.DockerInterface) gpu.GPUManager {
|
|
|
|
|
func NewNvidiaGPUManager(activePodsLister activePodsLister, dockerClient dockertools.DockerInterface) (gpu.GPUManager, error) {
|
|
|
|
|
if dockerClient == nil {
|
|
|
|
|
return nil, fmt.Errorf("invalid docker client specified")
|
|
|
|
|
}
|
|
|
|
|
return &nvidiaGPUManager{
|
|
|
|
|
allGPUs: sets.NewString(),
|
|
|
|
|
dockerClient: dockerClient,
|
|
|
|
|
activePodsLister: activePodsLister,
|
|
|
|
|
}
|
|
|
|
|
}, nil
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Initialize the GPU devices, so far only needed to discover the GPU paths.
|
|
|
|
|
func (ngm *nvidiaGPUManager) Start() error {
|
|
|
|
|
if _, err := os.Stat(NvidiaCtlDevice); err != nil {
|
|
|
|
|
return err
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if _, err := os.Stat(NvidiaUVMDevice); err != nil {
|
|
|
|
|
return err
|
|
|
|
|
if ngm.dockerClient == nil {
|
|
|
|
|
return fmt.Errorf("invalid docker client specified")
|
|
|
|
|
}
|
|
|
|
|
ngm.Lock()
|
|
|
|
|
defer ngm.Unlock()
|
|
|
|
|
|
|
|
|
|
if _, err := os.Stat(nvidiaCtlDevice); err != nil {
|
|
|
|
|
return err
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if _, err := os.Stat(nvidiaUVMDevice); err != nil {
|
|
|
|
|
return err
|
|
|
|
|
}
|
|
|
|
|
ngm.defaultDevices = []string{nvidiaCtlDevice, nvidiaUVMDevice}
|
|
|
|
|
_, err := os.Stat(nvidiaUVMToolsDevice)
|
|
|
|
|
if os.IsNotExist(err) {
|
|
|
|
|
ngm.defaultDevices = append(ngm.defaultDevices, nvidiaUVMToolsDevice)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if err := ngm.discoverGPUs(); err != nil {
|
|
|
|
|
return err
|
|
|
|
|
}
|
|
|
|
|
// Its possible that the runtime isn't available now.
|
|
|
|
|
// It's possible that the runtime isn't available now.
|
|
|
|
|
allocatedGPUs, err := ngm.gpusInUse()
|
|
|
|
|
if err == nil {
|
|
|
|
|
ngm.allocated = allocatedGPUs
|
|
|
|
|
}
|
|
|
|
|
// We ignore errors with identifying allocated GPUs because it is possible that the runtime interfaces may be not be logically up.
|
|
|
|
|
// We ignore errors when identifying allocated GPUs because it is possible that the runtime interfaces may be not be logically up.
|
|
|
|
|
return nil
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@@ -130,13 +143,13 @@ func (ngm *nvidiaGPUManager) AllocateGPU(pod *v1.Pod, container *v1.Container) (
|
|
|
|
|
// Initialization is not complete. Try now. Failures can no longer be tolerated.
|
|
|
|
|
allocated, err := ngm.gpusInUse()
|
|
|
|
|
if err != nil {
|
|
|
|
|
return nil, fmt.Errorf("failed to allocate GPUs because of issues identifying GPUs in use: %v", err)
|
|
|
|
|
return nil, fmt.Errorf("Failed to allocate GPUs because of issues identifying GPUs in use: %v", err)
|
|
|
|
|
}
|
|
|
|
|
ngm.allocated = allocated
|
|
|
|
|
} else {
|
|
|
|
|
// update internal list of GPUs in use prior to allocating new GPUs.
|
|
|
|
|
if err := ngm.updateAllocatedGPUs(); err != nil {
|
|
|
|
|
return nil, fmt.Errorf("failed to allocate GPUs because of issues with updating GPUs in use: %v", err)
|
|
|
|
|
return nil, fmt.Errorf("Failed to allocate GPUs because of issues with updating GPUs in use: %v", err)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Get GPU devices in use.
|
|
|
|
@@ -146,23 +159,24 @@ func (ngm *nvidiaGPUManager) AllocateGPU(pod *v1.Pod, container *v1.Container) (
|
|
|
|
|
if int64(available.Len()) < gpusNeeded {
|
|
|
|
|
return nil, fmt.Errorf("requested number of GPUs unavailable. Requested: %d, Available: %d", gpusNeeded, available.Len())
|
|
|
|
|
}
|
|
|
|
|
var ret []string
|
|
|
|
|
for _, device := range available.List() {
|
|
|
|
|
if gpusNeeded > 0 {
|
|
|
|
|
ret = append(ret, device)
|
|
|
|
|
// Update internal allocated GPU cache.
|
|
|
|
|
ngm.allocated.insert(string(pod.UID), device)
|
|
|
|
|
}
|
|
|
|
|
gpusNeeded--
|
|
|
|
|
ret := available.List()[:gpusNeeded]
|
|
|
|
|
for _, device := range ret {
|
|
|
|
|
// Update internal allocated GPU cache.
|
|
|
|
|
ngm.allocated.insert(string(pod.UID), device)
|
|
|
|
|
}
|
|
|
|
|
// Add standard devices files that needs to be exposed.
|
|
|
|
|
ret = append(ret, ngm.defaultDevices...)
|
|
|
|
|
|
|
|
|
|
return ret, nil
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// updateAllocatedGPUs updates the list of GPUs in use.
|
|
|
|
|
// It gets a list of running pods and then frees any GPUs that are bound to terminated pods.
|
|
|
|
|
// Returns error on failure.
|
|
|
|
|
func (ngm *nvidiaGPUManager) updateAllocatedGPUs() error {
|
|
|
|
|
activePods, err := ngm.activePodsLister.GetRunningPods()
|
|
|
|
|
if err != nil {
|
|
|
|
|
return fmt.Errorf("failed to list active pods: %v", err)
|
|
|
|
|
return fmt.Errorf("Failed to list active pods: %v", err)
|
|
|
|
|
}
|
|
|
|
|
activePodUids := sets.NewString()
|
|
|
|
|
for _, pod := range activePods {
|
|
|
|
@@ -232,12 +246,12 @@ func (ngm *nvidiaGPUManager) gpusInUse() (*podGPUs, error) {
|
|
|
|
|
// add the pod and its containers that need to be inspected.
|
|
|
|
|
podContainersToInspect = append(podContainersToInspect, podContainers{string(pod.UID), containerIDs})
|
|
|
|
|
}
|
|
|
|
|
ret := newPodGpus()
|
|
|
|
|
ret := newPodGPUs()
|
|
|
|
|
for _, podContainer := range podContainersToInspect {
|
|
|
|
|
for _, containerId := range podContainer.containerIDs.List() {
|
|
|
|
|
containerJSON, err := ngm.dockerClient.InspectContainer(containerId)
|
|
|
|
|
if err != nil {
|
|
|
|
|
glog.V(3).Infof("failed to inspect container %q in pod %q while attempting to reconcile nvidia gpus in use", containerId, podContainer.uid)
|
|
|
|
|
glog.V(3).Infof("Failed to inspect container %q in pod %q while attempting to reconcile nvidia gpus in use", containerId, podContainer.uid)
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|