Extend WO engine funcional tests
1. Adjust test to work with multiple cache lines 2. Extend test workset to cover larger I/O Signed-off-by: Adam Rutkowski <adam.j.rutkowski@intel.com>
This commit is contained in:
parent
0e3c9e740e
commit
62497cabee
@ -6,7 +6,11 @@
|
||||
from ctypes import c_int, memmove, cast, c_void_p
|
||||
from enum import IntEnum
|
||||
from itertools import product
|
||||
from itertools import repeat
|
||||
import pytest
|
||||
import random
|
||||
from hashlib import md5
|
||||
from datetime import datetime
|
||||
|
||||
from pyocf.types.cache import Cache, CacheMode
|
||||
from pyocf.types.core import Core
|
||||
@ -14,7 +18,15 @@ from pyocf.types.volume import Volume
|
||||
from pyocf.types.data import Data
|
||||
from pyocf.types.io import IoDir
|
||||
from pyocf.utils import Size
|
||||
from pyocf.types.shared import OcfCompletion
|
||||
from pyocf.types.shared import OcfCompletion, CacheLineSize
|
||||
|
||||
|
||||
def get_byte(number, byte):
|
||||
return (number & (0xFF << (byte * 8))) >> (byte * 8)
|
||||
|
||||
|
||||
def bytes_to_uint32(byte0, byte1, byte2, byte3):
|
||||
return (int(byte3) << 24) + (int(byte2) << 16) + (int(byte1) << 8) + int(byte0)
|
||||
|
||||
|
||||
def __io(io, queue, address, size, data, direction):
|
||||
@ -23,7 +35,7 @@ def __io(io, queue, address, size, data, direction):
|
||||
io.callback = completion.callback
|
||||
io.submit()
|
||||
completion.wait()
|
||||
return int(completion.results['err'])
|
||||
return int(completion.results["err"])
|
||||
|
||||
|
||||
def _io(new_io, queue, address, size, data, offset, direction):
|
||||
@ -39,175 +51,356 @@ def _io(new_io, queue, address, size, data, offset, direction):
|
||||
|
||||
|
||||
def io_to_core(core, address, size, data, offset, direction):
|
||||
return _io(core.new_core_io, core.cache.get_default_queue(), address, size,
|
||||
data, offset, direction)
|
||||
return _io(
|
||||
core.new_core_io,
|
||||
core.cache.get_default_queue(),
|
||||
address,
|
||||
size,
|
||||
data,
|
||||
offset,
|
||||
direction,
|
||||
)
|
||||
|
||||
|
||||
def io_to_exp_obj(core, address, size, data, offset, direction):
|
||||
return _io(core.new_io, core.cache.get_default_queue(), address, size, data,
|
||||
offset, direction)
|
||||
return _io(
|
||||
core.new_io,
|
||||
core.cache.get_default_queue(),
|
||||
address,
|
||||
size,
|
||||
data,
|
||||
offset,
|
||||
direction,
|
||||
)
|
||||
|
||||
|
||||
def sector_to_region(sector, region_start):
|
||||
num_regions = len(region_start)
|
||||
i = 0
|
||||
while i < len(region_start) - 1 and sector >= region_start[i + 1]:
|
||||
while i < num_regions - 1 and sector >= region_start[i + 1]:
|
||||
i += 1
|
||||
return i
|
||||
|
||||
|
||||
def region_end(region_start, region_no, total_sectors):
|
||||
num_regions = len(region_start)
|
||||
return (
|
||||
region_start[region_no + 1] - 1
|
||||
if region_no < num_regions - 1
|
||||
else total_sectors - 1
|
||||
)
|
||||
|
||||
|
||||
class SectorStatus(IntEnum):
|
||||
DIRTY = 0,
|
||||
CLEAN = 1,
|
||||
INVALID = 2,
|
||||
INVALID = (0,)
|
||||
CLEAN = (1,)
|
||||
DIRTY = (2,)
|
||||
|
||||
|
||||
def sector_status_to_char(status):
|
||||
if status == SectorStatus.INVALID:
|
||||
return "I"
|
||||
if status == SectorStatus.DIRTY:
|
||||
return "D"
|
||||
if status == SectorStatus.CLEAN:
|
||||
return "C"
|
||||
|
||||
|
||||
I = SectorStatus.INVALID
|
||||
D = SectorStatus.DIRTY
|
||||
C = SectorStatus.CLEAN
|
||||
|
||||
# Test reads with 4k cacheline and different combinations of sectors status and
|
||||
# IO range. Three consecutive core lines are targeted, with the middle one (no 1)
|
||||
# having all sectors status (clean, dirty, invalid) set independently. The other
|
||||
# two lines either are fully dirty/clean/invalid or have the single sector
|
||||
# neighbouring with middle core line with different status. This gives total of
|
||||
# 12 regions with independent state, listed on the diagram below.
|
||||
|
||||
# Print test case description for debug/informational purposes. Example output (for
|
||||
# 4k cacheline):
|
||||
# |8C|8C>|8C|7CD|3IC<2C2I|C7I|8I|8I|8I|
|
||||
#
|
||||
# cache line | CL 0 | CL 1 | CL 2 |
|
||||
# sector no |01234567|89ABCDEF|(ctd..) |
|
||||
# |........|........|........|
|
||||
# region no |00000001|23456789|ABBBBBBB|
|
||||
# io start possible | | | |
|
||||
# values @START |> >>|>>>>>>>>| |
|
||||
# io end possible | | | |
|
||||
# values @END | |<<<<<<<<|<< <|
|
||||
# - pipe character represents cacheline boundary
|
||||
# - letters represent sector status ((D)irty, (C)lean, (I)nvalid)
|
||||
# - numbers represent number of consecutive sectors with the same staus (e.g. '3I' means
|
||||
# 3 invalid sectors). No number (e.g. 'D') means one sector.
|
||||
# - '>' and '<' characters represent I/O target adress range
|
||||
def print_test_case(
|
||||
reg_start_sec, region_state, io_start, io_end, total_sectors, sectors_per_cacheline
|
||||
):
|
||||
cl_strted = -1
|
||||
|
||||
sec = 0
|
||||
while sec <= total_sectors:
|
||||
if io_start == sec:
|
||||
print(">", end="")
|
||||
|
||||
if sec % sectors_per_cacheline == 0:
|
||||
print("|", end="")
|
||||
|
||||
if io_end == sec - 1:
|
||||
print("<", end="")
|
||||
|
||||
if sec == total_sectors:
|
||||
break
|
||||
|
||||
cl_boundary_dist = sectors_per_cacheline - (sec % sectors_per_cacheline)
|
||||
io_start_dist = io_start - sec if io_start > sec else 2 * total_sectors
|
||||
io_end_dist = io_end - sec + 1 if io_end >= sec else 2 * total_sectors
|
||||
next_sec_dist = min(cl_boundary_dist, io_start_dist, io_end_dist)
|
||||
|
||||
# move up as much as @next_sec_dist sectors as long as they're in the same state
|
||||
reg = sector_to_region(sec, reg_start_sec)
|
||||
state = region_state[reg]
|
||||
i = 0
|
||||
regch_end_dist = 0
|
||||
while (
|
||||
reg + i < len(reg_start_sec)
|
||||
and state == region_state[reg + i]
|
||||
and regch_end_dist < next_sec_dist
|
||||
):
|
||||
regch_end_dist = region_end(reg_start_sec, reg + i, total_sectors) - sec + 1
|
||||
i += 1
|
||||
|
||||
next_sec_dist = min(next_sec_dist, regch_end_dist)
|
||||
|
||||
if next_sec_dist > 1:
|
||||
print("{}{}".format(next_sec_dist, sector_status_to_char(state)), end="")
|
||||
else:
|
||||
print("{}".format(sector_status_to_char(state)), end="")
|
||||
|
||||
sec += next_sec_dist
|
||||
assert sec == total_sectors or sec == reg_start_sec[region + 1]
|
||||
|
||||
print("")
|
||||
|
||||
|
||||
# Test reads with with different combinations of sectors status and IO range.
|
||||
# Nine consecutive core lines are targeted, with the middle one (no 4)
|
||||
# having all sectors status (clean, dirty, invalid) set independently. Neighbouring
|
||||
# two lines either are fully dirty/clean/invalid or have a different status for a single
|
||||
# sector neighbouring with middle core line The first and the last three cachelines
|
||||
# both constitute a single region and each triple is always fully dirty/clean/invalid.
|
||||
# This gives total of at least 14 regions with independent state (4k cacheline case). The below
|
||||
# diagram depicts 4k cacheline case:
|
||||
#
|
||||
# cache line | CL 0 | CL 1 | CL 2 | CL 3 | CL 4 | CL 5 | CL 6 | CL 7 | CL 8 |
|
||||
# 512 sector no |01234567|89ABCDEF|(ctd..) | ... | ... | ... | ... | ... | ... |
|
||||
# test region no |00000000|00000000|00000000|11111112|3456789A|BCCCCCCC|DDDDDDDD|DDDDDDDD|DDDDDDDD|
|
||||
# test region start? |*-------|--------|--------|*------*|********|**------|*-------|--------|--------|
|
||||
# io start possible | | | | | | | | | |
|
||||
# values @START |> |> |> |> >>|>>>>>>>>| | | | |
|
||||
# io end possible | | | | | | | | | |
|
||||
# values @END | | | <| |<<<<<<<<|<< <| <| <| <|
|
||||
#
|
||||
# Each test iteration is described by region states and IO start/end sectors,
|
||||
# giving total of 14 parameters
|
||||
# giving total of (cacheline_size / 512B) + 8 parameters:
|
||||
# - 1 region state for cachelines 0-2
|
||||
# - 2 region states for cacheline 3
|
||||
# - (cacheline_size / 512B) region states for cacheline 4 (1 for each sector in cacheline)
|
||||
# - 2 region states for and cacheline 5
|
||||
# - 1 region state for cachelines 6-8
|
||||
# - IO start and end sector
|
||||
#
|
||||
# In order to determine data consistency, cache is filled with data so so that:
|
||||
# - core sector no @n is filled with @n
|
||||
# - if clean, exported object sector no @n is filled with 100 + @n
|
||||
# - if dirty, exported object sector no @n is filled with 200 + @n
|
||||
# In order to determine data consistency, drives are filled with 32-bit pattern:
|
||||
# - core sector no @n *not* promoted to cache (invalid sector) is filled with (@n << 2) + 0
|
||||
# - cache and core clean sector no @n is filled with (@n << 2) + 1
|
||||
# - cache sector no @n containing dirty data is filled with (@n << 2) + 2
|
||||
#
|
||||
# This data pattern is enforced by writing to exported object in the following order:
|
||||
# 1. writing entire workset with core patern in PT
|
||||
# 2. writing clean sectors with clean pattern in WT
|
||||
# 3. writing dirty sectors with dirty pattern in WO
|
||||
#
|
||||
# Then the verification is simply a matter of issuing a read in WO mode and verifying
|
||||
# that the expected pattern is read from each sector.
|
||||
|
||||
|
||||
def test_wo_read_data_consistency(pyocf_ctx):
|
||||
# start sector for each region
|
||||
region_start = [0, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
|
||||
# possible start sectors for test iteration
|
||||
start_sec = [0, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
|
||||
# possible end sectors for test iteration
|
||||
end_sec = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 23]
|
||||
|
||||
CACHELINE_COUNT = 3
|
||||
CACHELINE_SIZE = 4096
|
||||
@pytest.mark.parametrize("cacheline_size", CacheLineSize)
|
||||
@pytest.mark.parametrize("rand_seed", [datetime.now()])
|
||||
def test_wo_read_data_consistency(pyocf_ctx, cacheline_size, rand_seed):
|
||||
CACHELINE_COUNT = 9
|
||||
SECTOR_SIZE = Size.from_sector(1).B
|
||||
CLS = CACHELINE_SIZE // SECTOR_SIZE
|
||||
WORKSET_SIZE = CACHELINE_COUNT * CACHELINE_SIZE
|
||||
WORKSET_OFFSET = 1024 * CACHELINE_SIZE
|
||||
CLS = cacheline_size // SECTOR_SIZE
|
||||
WORKSET_SIZE = CACHELINE_COUNT * cacheline_size
|
||||
WORKSET_OFFSET = 128 * cacheline_size
|
||||
SECTOR_COUNT = int(WORKSET_SIZE / SECTOR_SIZE)
|
||||
ITRATION_COUNT = 200
|
||||
ITRATION_COUNT = 50
|
||||
|
||||
# fixed test cases
|
||||
fixed_combinations = [
|
||||
[I, I, D, D, D, D, D, D, D, D, I, I],
|
||||
[I, I, C, C, C, C, C, C, C, C, I, I],
|
||||
[I, I, D, D, D, I, D, D, D, D, I, I],
|
||||
[I, I, D, D, D, I, I, D, D, D, I, I],
|
||||
[I, I, I, I, D, I, I, D, C, D, I, I],
|
||||
[I, D, D, D, D, D, D, D, D, D, D, I],
|
||||
[C, C, I, D, D, I, D, D, D, D, D, I],
|
||||
[D, D, D, D, D, D, D, D, D, D, D, I],
|
||||
random.seed(rand_seed)
|
||||
|
||||
# start sector for each region (positions of '*' on the above diagram)
|
||||
region_start = (
|
||||
[0, 3 * CLS, 4 * CLS - 1]
|
||||
+ [4 * CLS + i for i in range(CLS)]
|
||||
+ [5 * CLS, 5 * CLS + 1, 6 * CLS]
|
||||
)
|
||||
num_regions = len(region_start)
|
||||
# possible IO start sectors for test iteration (positions of '>' on the above diagram)
|
||||
start_sec = [0, CLS, 2 * CLS, 3 * CLS, 4 * CLS - 2, 4 * CLS - 1] + [
|
||||
4 * CLS + i for i in range(CLS)
|
||||
]
|
||||
# possible IO end sectors for test iteration (positions o '<' on the above diagram)
|
||||
end_sec = (
|
||||
[3 * CLS - 1]
|
||||
+ [4 * CLS + i for i in range(CLS)]
|
||||
+ [5 * CLS, 5 * CLS + 1, 6 * CLS - 1, 7 * CLS - 1, 8 * CLS - 1, 9 * CLS - 1]
|
||||
)
|
||||
|
||||
data = {}
|
||||
# memset n-th sector of core data with n
|
||||
data[SectorStatus.INVALID] = bytes([x // SECTOR_SIZE for x in range(WORKSET_SIZE)])
|
||||
# memset n-th sector of clean data with n + 100
|
||||
data[SectorStatus.CLEAN] = bytes([100 + x // SECTOR_SIZE for x in range(WORKSET_SIZE)])
|
||||
# memset n-th sector of dirty data with n + 200
|
||||
data[SectorStatus.DIRTY] = bytes([200 + x // SECTOR_SIZE for x in range(WORKSET_SIZE)])
|
||||
# memset n-th sector of core data with n << 2
|
||||
data[SectorStatus.INVALID] = bytes(
|
||||
[get_byte(((x // SECTOR_SIZE) << 2) + 0, x % 4) for x in range(WORKSET_SIZE)]
|
||||
)
|
||||
# memset n-th sector of clean data with n << 2 + 1
|
||||
data[SectorStatus.CLEAN] = bytes(
|
||||
[get_byte(((x // SECTOR_SIZE) << 2) + 1, x % 4) for x in range(WORKSET_SIZE)]
|
||||
)
|
||||
# memset n-th sector of dirty data with n << 2 + 2
|
||||
data[SectorStatus.DIRTY] = bytes(
|
||||
[get_byte(((x // SECTOR_SIZE) << 2) + 2, x % 4) for x in range(WORKSET_SIZE)]
|
||||
)
|
||||
|
||||
result_b = bytes(WORKSET_SIZE)
|
||||
|
||||
cache_device = Volume(Size.from_MiB(30))
|
||||
core_device = Volume(Size.from_MiB(30))
|
||||
|
||||
cache = Cache.start_on_device(cache_device, cache_mode=CacheMode.WO)
|
||||
cache = Cache.start_on_device(
|
||||
cache_device, cache_mode=CacheMode.WO, cache_line_size=cacheline_size
|
||||
)
|
||||
core = Core.using_device(core_device)
|
||||
|
||||
cache.add_core(core)
|
||||
|
||||
insert_order = [x for x in range(CACHELINE_COUNT)]
|
||||
insert_order = list(range(CACHELINE_COUNT))
|
||||
|
||||
# generate regions status combinations and shuffle it
|
||||
combinations = []
|
||||
state_combinations = product(SectorStatus, repeat=len(region_start))
|
||||
for S in state_combinations:
|
||||
combinations.append(S)
|
||||
random.shuffle(combinations)
|
||||
# set fixed generated sector statuses
|
||||
region_statuses = [
|
||||
[I, I, I] + [I for i in range(CLS)] + [I, I, I],
|
||||
[I, I, I] + [D for i in range(CLS)] + [I, I, I],
|
||||
[I, I, I] + [C for i in range(CLS)] + [I, I, I],
|
||||
[I, I, I]
|
||||
+ [D for i in range(CLS // 2 - 1)]
|
||||
+ [I]
|
||||
+ [D for i in range(CLS // 2)]
|
||||
+ [I, I, I],
|
||||
[I, I, I]
|
||||
+ [D for i in range(CLS // 2 - 1)]
|
||||
+ [I, I]
|
||||
+ [D for i in range(CLS // 2 - 1)]
|
||||
+ [I, I, I],
|
||||
[I, I, I]
|
||||
+ [D for i in range(CLS // 2 - 2)]
|
||||
+ [I, I, D, C]
|
||||
+ [D for i in range(CLS // 2 - 2)]
|
||||
+ [I, I, I],
|
||||
[I, I, D] + [D for i in range(CLS)] + [D, I, I],
|
||||
[I, I, D]
|
||||
+ [D for i in range(CLS // 2 - 1)]
|
||||
+ [I]
|
||||
+ [D for i in range(CLS // 2)]
|
||||
+ [D, I, I],
|
||||
]
|
||||
|
||||
# add fixed test cases at the beginning
|
||||
combinations = fixed_combinations + combinations
|
||||
# add randomly generated sector statuses
|
||||
for _ in range(ITRATION_COUNT - len(region_statuses)):
|
||||
region_statuses.append(
|
||||
[random.choice(list(SectorStatus)) for _ in range(num_regions)]
|
||||
)
|
||||
|
||||
for S in combinations[:ITRATION_COUNT]:
|
||||
# write data to core and invalidate all CL
|
||||
# iterate over generated status combinations and perform the test
|
||||
for region_state in region_statuses:
|
||||
# write data to core and invalidate all CL and write data pattern to core
|
||||
cache.change_cache_mode(cache_mode=CacheMode.PT)
|
||||
io_to_exp_obj(core, WORKSET_OFFSET, len(data[SectorStatus.INVALID]),
|
||||
data[SectorStatus.INVALID], 0, IoDir.WRITE)
|
||||
io_to_exp_obj(
|
||||
core,
|
||||
WORKSET_OFFSET,
|
||||
len(data[SectorStatus.INVALID]),
|
||||
data[SectorStatus.INVALID],
|
||||
0,
|
||||
IoDir.WRITE,
|
||||
)
|
||||
|
||||
# randomize cacheline insertion order to exercise different
|
||||
# paths with regard to cache I/O physical addresses continuousness
|
||||
random.shuffle(insert_order)
|
||||
sectors = [insert_order[i // CLS] * CLS + (i % CLS) for i in range(SECTOR_COUNT)]
|
||||
sectors = [
|
||||
insert_order[i // CLS] * CLS + (i % CLS) for i in range(SECTOR_COUNT)
|
||||
]
|
||||
|
||||
# insert clean sectors - iterate over cachelines in @insert_order order
|
||||
cache.change_cache_mode(cache_mode=CacheMode.WT)
|
||||
for sec in sectors:
|
||||
region = sector_to_region(sec, region_start)
|
||||
if S[region] != SectorStatus.INVALID:
|
||||
io_to_exp_obj(core, WORKSET_OFFSET + SECTOR_SIZE * sec, SECTOR_SIZE,
|
||||
data[SectorStatus.CLEAN], sec * SECTOR_SIZE, IoDir.WRITE)
|
||||
if region_state[region] != SectorStatus.INVALID:
|
||||
io_to_exp_obj(
|
||||
core,
|
||||
WORKSET_OFFSET + SECTOR_SIZE * sec,
|
||||
SECTOR_SIZE,
|
||||
data[SectorStatus.CLEAN],
|
||||
sec * SECTOR_SIZE,
|
||||
IoDir.WRITE,
|
||||
)
|
||||
|
||||
# write dirty sectors
|
||||
cache.change_cache_mode(cache_mode=CacheMode.WO)
|
||||
for sec in sectors:
|
||||
region = sector_to_region(sec, region_start)
|
||||
if S[region] == SectorStatus.DIRTY:
|
||||
io_to_exp_obj(core, WORKSET_OFFSET + SECTOR_SIZE * sec, SECTOR_SIZE,
|
||||
data[SectorStatus.DIRTY], sec * SECTOR_SIZE, IoDir.WRITE)
|
||||
if region_state[region] == SectorStatus.DIRTY:
|
||||
io_to_exp_obj(
|
||||
core,
|
||||
WORKSET_OFFSET + SECTOR_SIZE * sec,
|
||||
SECTOR_SIZE,
|
||||
data[SectorStatus.DIRTY],
|
||||
sec * SECTOR_SIZE,
|
||||
IoDir.WRITE,
|
||||
)
|
||||
|
||||
core_device.reset_stats()
|
||||
|
||||
for s in start_sec:
|
||||
for e in end_sec:
|
||||
if s > e:
|
||||
continue
|
||||
# get up to 32 randomly selected pairs of (start,end) sectors
|
||||
# 32 is enough to cover all combinations for 4K and 8K cacheline size
|
||||
io_ranges = [(s, e) for s, e in product(start_sec, end_sec) if s < e]
|
||||
random.shuffle(io_ranges)
|
||||
io_ranges = io_ranges[:32]
|
||||
|
||||
# issue WO read
|
||||
START = s * SECTOR_SIZE
|
||||
END = e * SECTOR_SIZE
|
||||
size = (e - s + 1) * SECTOR_SIZE
|
||||
assert 0 == io_to_exp_obj(
|
||||
core, WORKSET_OFFSET + START, size, result_b, START, IoDir.READ
|
||||
), "error reading in WO mode: S={}, start={}, end={}, insert_order={}".format(
|
||||
S, s, e, insert_order
|
||||
# run the test for each selected IO range for currently set up region status
|
||||
for start, end in io_ranges:
|
||||
print_test_case(region_start, region_state, start, end, SECTOR_COUNT, CLS)
|
||||
|
||||
# issue WO read
|
||||
START = start * SECTOR_SIZE
|
||||
END = end * SECTOR_SIZE
|
||||
size = (end - start + 1) * SECTOR_SIZE
|
||||
assert 0 == io_to_exp_obj(
|
||||
core, WORKSET_OFFSET + START, size, result_b, START, IoDir.READ
|
||||
), "error reading in WO mode: region_state={}, start={}, end={}, insert_order={}".format(
|
||||
region_state, start, end, insert_order
|
||||
)
|
||||
|
||||
# verify read data
|
||||
for sec in range(start, end + 1):
|
||||
# just check the first 32bits of sector (this is the size of fill pattern)
|
||||
region = sector_to_region(sec, region_start)
|
||||
start_byte = sec * SECTOR_SIZE
|
||||
expected_data = bytes_to_uint32(
|
||||
data[region_state[region]][start_byte + 0],
|
||||
data[region_state[region]][start_byte + 1],
|
||||
data[region_state[region]][start_byte + 2],
|
||||
data[region_state[region]][start_byte + 3],
|
||||
)
|
||||
actual_data = bytes_to_uint32(
|
||||
result_b[start_byte + 0],
|
||||
result_b[start_byte + 1],
|
||||
result_b[start_byte + 2],
|
||||
result_b[start_byte + 3],
|
||||
)
|
||||
|
||||
# verify read data
|
||||
for sec in range(s, e + 1):
|
||||
# just check the first byte of sector
|
||||
region = sector_to_region(sec, region_start)
|
||||
check_byte = sec * SECTOR_SIZE
|
||||
assert (
|
||||
result_b[check_byte] == data[S[region]][check_byte]
|
||||
), "unexpected data in sector {}, S={}, s={}, e={}, insert_order={}\n".format(
|
||||
sec, S, s, e, insert_order
|
||||
)
|
||||
|
||||
# WO is not supposed to clean dirty data
|
||||
assert (
|
||||
core_device.get_stats()[IoDir.WRITE] == 0
|
||||
), "unexpected write to core device, S={}, s={}, e={}, insert_order = {}\n".format(
|
||||
S, s, e, insert_order
|
||||
actual_data == expected_data
|
||||
), "unexpected data in sector {}, region_state={}, start={}, end={}, insert_order={}\n".format(
|
||||
sec, region_state, start, end, insert_order
|
||||
)
|
||||
|
||||
# WO is not supposed to clean dirty data
|
||||
assert (
|
||||
core_device.get_stats()[IoDir.WRITE] == 0
|
||||
), "unexpected write to core device, region_state={}, start={}, end={}, insert_order = {}\n".format(
|
||||
region_state, start, end, insert_order
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user